Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078502    DOI: 10.1088/1674-1056/abe2fb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN

Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲)
Engineering Research Center of Internet of Things Technology Applications(Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Abstract  Ultra-high-voltage (UHV) junction field-effect transistors (JFETs) embedded separately with the lateral NPN (JFET-LNPN), and the lateral and vertical NPN (JFET-LVNPN), are demonstrated experimentally for improving the electrostatic discharge (ESD) robustness. The ESD characteristics show that both JFET-LNPN and JFET-LVNPN can pass the 5.5-kV human body model (HBM) test. The JFETs embedded with different NPNs have 3.75 times stronger in ESD robustness than the conventional JFET. The failure analysis of the devices is performed with scanning electron microscopy, and the obtained delayer images illustrate that the JFETs embedded with NPN transistors have good voltage endurance capabilities. Finally, the internal physical mechanism of the JFETs embedded with different NPNs is investigated with emission microscopy and Sentaurus simulation, and the results confirm that the JFET-LVNPN has stronger ESD robustness than the JFET-LNPN, because the vertical NPN has a better electron collecting capacity. The JFET-LVNPN is helpful in providing a strong ESD protection and functions for a power device.
Keywords:  junction field-effect transistors      NPN      electrostatic discharge (ESD) robustness      ESD protection  
Received:  19 November 2020      Revised:  30 December 2020      Accepted manuscript online:  04 February 2021
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61504049).
Corresponding Authors:  Hai-Lian Liang     E-mail:  lhl2010@jiangnan.edu.cn

Cite this article: 

Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲) Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN 2021 Chin. Phys. B 30 078502

[1] Alnasser E 2020 IEEE Sens. J. 20 5360
[2] Donatoa N, Pagnanoa D, Napolib E, Longobardia G and Udrea F 2017 Diam Relat Mater. 78 73
[3] Chen Z, Salman A, Mathur G and Boselli G 2015 Proceedings of the 37th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), September 27-October 2, 2015, Reno, NV, USA, p. 1
[4] Wang J L, Chen Y Q, Feng J T, Xu X B, EN Y F, Hou B, Gao R, Chen Y, Huang Y and Geng K W 2020 IEEE J. Electron Dev. Soc. 8 145
[5] Durdaut P, Penner V, Kirchhof C, Quandt E, Knöchel R and Höft M 2017 IEEE Sensors J. 17 7364
[6] Takamori Taro, Wada Keiji, Saito Wataru and Nishizawa Shinichi 2020 Microelectron Reliab. 114 113776
[7] Hou X Y, Huang R, Chen G, Liu S, Zhang X, Wang Y Y and Yu B 2008 Chin. Phys. B 17 685
[8] Nidhi K and Ker M D 2017 IEEE Trans. Electron Dev. 64 2812
[9] Vincent L, Nguyen-Dac B, Crebier J C, Alkayal F and Schaeffer C 2006 Proceedings of the 2006 IEEE International Symposium on Power Semiconductor Devices and IC's, June 4-8, 2006 Naples, Italy, p. 1
[10] Ng J C W, Sin J K O and Guan L P 2008 IEEE Electron Dev. Lett. 29 375
[11] Fujiwara S 2017 IEEE Trans. Dev. Mater. Rel. 17 616
[1] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
No Suggested Reading articles found!