Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Integrated superconducting circuit for qubit and resonator protection |
Xiao-Pei Yang(杨晓沛), Zhi-Kun Han(韩志坤), Shu-Qing Song(宋树清), Wen Zheng(郑文), Dong Lan(兰栋), Xin-Sheng Tan(谭新生), and Yang Yu(于扬)† |
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract A semi-infinite waveguide acts as a mirror and helps protect the qubit in front of it from decoherence. Here, we investigate the interference effect in an open waveguide consisting of resonators with different decay rates. We find that a lossy resonator works as a mirror and changes the effective decay rate of the other. The spontaneous radiation of qubit is related to its environment, and we can control it by arranging the lossy resonator's position or frequency. Our approach helps improving the qubit performance, as well as the quantum gate fidelities.
|
Received: 08 April 2021
Revised: 10 May 2021
Accepted manuscript online: 12 May 2021
|
PACS:
|
84.40.Dc
|
(Microwave circuits)
|
|
12.20.-m
|
(Quantum electrodynamics)
|
|
31.30.J-
|
(Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)
|
|
Fund: Project supported by the National Key R&D Progarm of China (Grant No. 2016YFA0301802), the National Natural Science Foundation of China (Grant Nos. 61521001, 12074179, and 11890704), and the Key R&D Program of Guangdong Province, China (Grant No. 2018B030326001). |
Corresponding Authors:
Yang Yu
E-mail: yuyang@nju.edu.cn
|
Cite this article:
Xiao-Pei Yang(杨晓沛), Zhi-Kun Han(韩志坤), Shu-Qing Song(宋树清), Wen Zheng(郑文), Dong Lan(兰栋), Xin-Sheng Tan(谭新生), and Yang Yu(于扬) Integrated superconducting circuit for qubit and resonator protection 2021 Chin. Phys. B 30 078403
|
[1] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [2] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030 [3] Bianchetti R, Filipp S, Baur M, Fink J M, Göppl M, Leek P J, Steffen L, Blais A and Wallraff A 2009 Phys. Rev. A 80 043840 [4] Yang D, Laflamme C, Vasilyev D V, Baranov M A and Zoller P 2018 Phys. Rev. Lett. 120 133601 [5] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553 [6] Bloembergen N, Purcell E M and Pound R V 1948 Phys. Rev. 73 679 [7] O'Brien K, Macklin C, Siddiqi I and Zhang X 2014 Phys. Rev. Lett. 113 157001 [8] Sete E A, Martinis J M and Korotkov A N 2015 Phys. Rev. A 92 012325 [9] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110 [10] Sete E A, Gambetta J M and Korotkov A N 2014 Phys. Rev. B 89 104516 [11] Yin Y, Chen Y, Sank D, O'Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2013 Phys. Rev. Lett. 110 107001 [12] Jeffrey E, Sank D, Mutus J Y, White T C, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Megrant A, O'Malley P J J, Neill C, Roushan P, Vainsencher A, Wenner J, Cleland A N and Martinis J M 2014 Phys. Rev. Lett. 112 190504 [13] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [14] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S 2017 Nature Photonics 11 543 [15] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 [16] Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S and Oliver W D 2020 Nature 583 775 [17] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [18] Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502 [19] Bruce S W and Knight P L 1993 J. Modern Optics 40 1195 [20] Xiao Y F, Li M, Liu Y C, Li Y, Sun X D and Gong Q H 2010 Phys. Rev. A 86 065804 [21] Peng Z H, Jia C X, Zhang Y Q, Yuan J B and Kuang L M 2020 Phys. Rev. A 102 043527 [22] Lalumiére K, Sanders B C, van Loo A F, Fedorov A, Wallraff A and Blais A 2013 Phys. Rev. A 88 043806 [23] Joshua C, Kerckhoff J and Sarovar M 2017 Advances in Physics: X 2 784 [24] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155 [25] Hoi I C, Kockum A F, Tornberg L, Pourkabirian A, Johansson G, Delsing P and Wilson C M 2015 Nat. Phys. 11 1045 [26] Tufarelli T, Ciccarello F and Kim M S 2013 Phys. Rev. A 87 013820 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|