Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076102    DOI: 10.1088/1674-1056/abf113
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids

W J Jiang(江文杰) and M Z Li(李茂枝)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  The structure-dynamics correlations in a nonlocal manner were investigated in CuZr metallic glass-forming liquids via classical molecular dynamics simulations. A spatial coarse-graining approach was employed to incorporate the nonlocal structural information of given structural order parameters in the structure-dynamics relationship. It is found that the correlation between structure order parameters and dynamics increases with increasing coarse-graining length and has a characteristic length scale. Moreover, the characteristic correlation length exhibits a non-monotonic temperature evolution as temperature approaches glass transition temperature, which is not sensitive to the considered structure order parameters. Our results unveil a striking change in the structure-dynamics correlation, which involves no fitting theoretical interpretation. These findings provide new insight into the structure-dynamics correlation in glass transition.
Keywords:  metallic glass-forming liquid      structure-dynamics correlation      molecular dynamics simulation  
Received:  09 February 2021      Revised:  16 March 2021      Accepted manuscript online:  23 March 2021
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  64.70.pe (Metallic glasses)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 51631003).
Corresponding Authors:  M Z Li     E-mail:  maozhili@ruc.edu.cn

Cite this article: 

W J Jiang(江文杰) and M Z Li(李茂枝) Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids 2021 Chin. Phys. B 30 076102

[1] Anderson P W 1995 Science 267 1615
[2] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[3] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[4] Ediger M D 2000 Rev. Phys. Chem. 51 99
[5] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[6] Candelier R, Widmer-Cooper A, Kummerfeld J K, Dauchot O, Biroli G, Harrowell P and Reichman D R 2010 Phys. Rev. Lett. 105 135702
[7] Dyre J C 2006 Rev. Mod. Phys. 78 953
[8] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[9] Royall C P and Williams S R 2015 Phys. Rep. 560 1
[10] Frank F C 1952 Proc. R. Soc. Lond. A 215 43
[11] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B 28 784
[12] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419
[13] Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M W 2011 Nat. Mater. 10 28
[14] Leocmach M and Tanaka H 2012 Nat. Commun. 3 974
[15] Peng H L, Li M Z, Wang W H, Wang C Z and Ho K M 2010 Appl. Phys. Lett. 96 021901
[16] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701
[17] Li M Z, Wang C Z, Hao SG, Kramer M J and Ho K M 2009 Phys. Rev B 80 184201
[18] Hao S G, Wang C Z, Li M Z, Napolitano R E and Ho K M 2011 Phys. Rev. B 84 064203
[19] Wu Z W, Li M Z, Wang W H and Liu K X 2013 Phys. Rev. B 88 054202
[20] Soklaski R, Nussinov, Markow Z, Kelton K F and Yang L 2013 Phys. Rev. B 87 184203
[21] Wu Z W, Li F X, Huo C W, Li M Z, Wang W H and Liu K X 2016 Sci. Rep. 6 35967
[22] Li F X and Li M Z 2017 J. Appl. Phys. 122 225103
[23] Wu Z W, Kob W, Wang W H and Xu L M 2018 Nat. Commun. 9 5334
[24] Desgranges C and Delhommelle 2018 Phys. Rev. Lett. 120 115701
[25] Wu Z W and Wang W H 2020 Acta Phys. Sin. 69 066101 (in Chinese)
[26] Hocky G M, Coslovich D, Ikeda A and Reichman D R 2014 Phys. Rev. Lett. 113 157801
[27] Tong H and Tanaka H 2019 Nat. Commun. 10 5596
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D and Popel P 2009 Philos. Mag. 89 967
[30] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[31] Sammut C and Webb G I 2010 Encyclopedia Machine Learning (Boston: Springer)
[32] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503
[33] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[34] Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P and Wang W H 2017 Chin. Phys. B 26 016104
[35] Kob W, Roldán-Vargas S and Berthier L 2012 Nat. Phys. 8 164
[36] Stevenson J D, Schmalian J and Wolynes P G 2006 Nat. Phys. 2 268
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
No Suggested Reading articles found!