Superconductivity in an intermetallic oxide Hf3Pt4Ge2O
Chengchao Xu(徐程超)1,2, Hong Wang(王鸿)1,2, Huanfang Tian(田焕芳)1, Youguo Shi(石友国)1, Zi-An Li(李子安)1, Ruijuan Xiao(肖睿娟)1, Honglong Shi(施洪龙)3, Huaixin Yang(杨槐馨)1, and Jianqi Li(李建奇)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Science, Minzu University, Beijing 100081, China
Abstract Discovery of a new superconductor with distinct crystal structure and chemistry often provides great opportunity for further expanding superconductor material base, and also leads to better understanding of superconductivity mechanisms. Here, we report the discovery of superconductivity in a new intermetallic oxide Hf3Pt4Ge2O synthesized through a solid-state reaction. The Hf3Pt4Ge2O crystallizes in a cubic structure (space group Fm-3m) with a lattice constant of a = 1.241 nm, whose stoichiometry and atomic structure are determined by electron microscopy and x-ray diffraction techniques. The superconductivity at 4.1 K and type-Ⅱ superconducting nature are evidenced by the electrical resistivity, magnetic susceptibility, and specific heat measurements. The intermetallic oxide Hf3Pt4Ge2O system demonstrates an intriguing structural feature that foreign oxygen atoms can be accommodated in the interstitial sites of the ternary intermetallic framework. We also successfully synthesized a series of Hf3Pt4Ge2O1+δ (-0.25 ≤ δ ≤ 0.5), and found the δ-dependent superconducting transition temperature Tc. The atomic structure and the electronic structure are also substantiated by first-principles calculations. Our results present an entirely new family of superconductors with distinct structural and chemical characteristics, and could attract research interest in further finding new superconductors and exploring novel physics pertaining to the 5d-electron in these intermetallic compound systems.
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300303, 2017YFA0504703, 2017YFA0302904, and 2017YFA0303000), the National Basic Research Program of China (Grant No. 2015CB921304), the National Natural Science Foundation of China (Grant Nos. 11774391, 11774403, and 11804381), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB25000000 and XDB07020000), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. ZDKYYQ20170002), and the China Postdoctoral Science Foundation (Grant No. BX20180351).
Corresponding Authors:
Jianqi Li
E-mail: ljq@iphy.ac.cn
Cite this article:
Chengchao Xu(徐程超), Hong Wang(王鸿), Huanfang Tian(田焕芳), Youguo Shi(石友国), Zi-An Li(李子安), Ruijuan Xiao(肖睿娟), Honglong Shi(施洪龙), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇) Superconductivity in an intermetallic oxide Hf3Pt4Ge2O 2021 Chin. Phys. B 30 077403
[1] Onnes H K 1911 Comm. Phys. Lab. Univ. Leiden28 120 [2] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Schaefer H 1979 Phys. Rev. Lett.43 1892 [3] Bednorz J G and Müller K A 1986 Z. Phys. B64 189 [4] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q and Chu C W 1987 Phys. Rev. Lett.58 908 [5] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc.130 3296 [6] Matthias B T 1970 The Empirical Approach to Superconductivity (Boston: Springer) [7] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys.2 544 [8] Mao Y Y, Li J, Huan Y L, Yuan J, Li Z A, Chai K, Ma M W, Ni S L, Tian J P, Liu S B, Zhou H X, Zhou F, Li J Q, Zhang G M, Jin K, Dong X L and Zhao Z X. 2018 Chin. Phys. Lett.35 057402 [9] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A and Cao G H 2015 Phys. Rev. X5 011013 [10] Gumeniuk R, Schnelle W, Rosner H, Nicklas M, Leithe J A and Grin Y 2008 Phys. Rev. Lett.100 017002 [11] Zang J W, Zhang J, Zhu Z H, Ding Z F, Huang K, Peng X R, Hillier A D and Shu L 2019 Chin. Phys. Lett.36 107402 [12] Sheng Q, Zhang J, Huang K, Ding Z, Peng X, Tan C and Shu L 2017 Chin. Phys. B26 057401 [13] Zhang Y, Wang B, Xiao Z, Lu Y, Kamiya T, Uwatoko Y, Kageyama H and Hosono H 2017 npj Quantum Materials2 45 [14] Wang B, Zhang Y Q, Xu S X, Ishigaki K, Matsubayashi K, Cheng J G, Hosono H and Uwatoko Y. 2019 Chin. Phys. B28 107401 [15] Hamamoto S and Kitagawa J 2018 Mater. Res. Express5 106001 [16] Ma K, Lago J and Rohr F O V 2019 J. Alloys Compd.796 287 [17] Liu Z, Wu W, Zhao Z, Zhao H, Cui J, Shan P, Zhang J, Yang C, Sun P, Wei Y, Li S, Zhao J, Sui Y, Cheng J, Lu L, Luo J and Liu G 2019 Phys. Rev. B99 184509 [18] Larson A C and Dreele R B V 2000 Los Alamos National Laboratory Report LAUR86 [19] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [20] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [21] Nagata Y, Sodeyama K, Yashiro S, Sasaki H, Samata H, Uchida T and Lan M D 1998 J. Alloys Compd.281 112 [22] Bende D, Wagner F R, Sichevych O and Grin Y 2017 Angew. Chem. Int. Ed.56 1313 [23] Brandt E H 2004 Physica C404 74 [24] Helfand E and Werthamer N R 1966 Phys. Rev.147 288 [25] Xiang T 2006 d-Wave Superconductivity (Beijing: Science Press) pp. 55-56 (in Chinese) [26] Li S, Liu X Y, Anand V and Bing Lv 2018 New. J. Phys.20 aa9ccd [27] Xing J, Lin H, Li Y F, Li S, Zhu X Y, Yang H and Wen H H. 2016 Phys. Rev. B93 104520 [28] Hafiez M A, Aswartham S, Wurmehl S, Grinenko V, Hess C, Drechsler S L, Johnston S, Wolter A U B, Büchner B, Rosner H and Boeri L. 2012 Phys. Rev. B85 134533 [29] Deguchi K, Mao Z Q, Yaguchi H and Maeno Y 2004 Phys. Rev. Lett.92 047002 [30] McMillan W L 1968 Phys. Rev.167 331 [31] Wang B and Ohgushi K 2013 Sci. Rep.3 3381 [32] Hein R A 1956 Phys. Rev.102 1511 [33] Klimczuk T, Wang C H, Gofryk K, Ronning F, Winterlik J, Fecher G H, Griveau J C, Colineau E, Felser C, Thompson J D, Safarik D J and Cava R J 2012 Phys. Rev. B85 174505 [34] Matthias B T, Geballe T H and Corenzwit E 1954 Phys. Rev.95 143 [35] Matthias B T, Geballe T H, Longinotti L D, Corenzwit E, Hull G W, Willens R H and Maita J P 1967 Science156 645 [36] Tanigaki K, Ebbesen T W, Saito S, Mizuki J, Tsai J S, Kubo Y and Kuroshima S 1991 Nature352 222 [37] Cava R J, Takagi H, Zandbergen H W, Krajewski J J, Peck W F, Siegrist T, Batlogg B, Dover R B V, Felder R J, Mizuhashi K, Lee J O, Eisaki H and Uchida S 1994 Nature367 252 [38] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature410 63 [39] Cava R J 2000 J. Am. Ceram. Soc.83 5
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.