Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078704    DOI: 10.1088/1674-1056/ac05a2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer

Yanqiu Zhang(张艳秋)1, Hao Zhang(张浩)2, Tianyu Sun(孙天宇)1, Ting Pan(潘婷)1, Peiguo Wang(王佩国)3, and Xiqi Jian(菅喜岐)1,†
1 School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin 300070, China;
2 College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China;
3 Department of Radiotherapy, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300070, China
Abstract  The hemispherical phased transducer maximizes the coverage of the skull and the ultrasonic energy per unit area of the skull is minimized, thereby reducing the risk of skull burns, but the transducer has a small focal area adjustment range, increasing the focal length of treatment is an urgent question for this type of transducer. In this paper, a three-dimensional high-intensity focused ultrasound (HIFU) transcranial propagation model is established based on the human head structure. The finite difference time domain (FDTD) is combined with the Westervelt acoustic wave nonlinear propagation equation and Penne's biological heat conduction equation for numerical simulation of the sound pressure field and temperature field. Forming a treatable focal area in a small-opening hemispherical transducer with a small amount of numerical simulation calculation focusing at a set position to determine the minimum partial excitation area ratio of focusing. And then, applying these preliminary results to a large-opening diameter hemispherical transducer and the temperature field formed by it or full excitation is studied. The results show that the focus area with the excitation area ratio of less than 22% moves forward to the transducer side when the excitation sound is formed. When the excitation area ratio is greater than or equal to 23%, it focuses at the set position. In the case of partial incentives, using 23% of the partial array, the adjustable range of the treatable focal area formed in the three-dimensional space is larger than that of the full excitation.
Keywords:  high-intensity focused ultrasound      partial elements excitation      simulation      phased transducer  
Received:  07 April 2021      Revised:  06 May 2021      Accepted manuscript online:  27 May 2021
PACS:  87.50.Y- (Biological effects of acoustic and ultrasonic energy)  
  87.55.Gh (Simulation)  
  87.55.dh (Tissue response)  
  87.55.de (Optimization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 81272495) and the Natural Science Foundation of Tianjin (Grant No. 16JC2DJC32200).
Corresponding Authors:  Xiqi Jian     E-mail:  jianxiqi@tmu.edu.cn

Cite this article: 

Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐) Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer 2021 Chin. Phys. B 30 078704

[1] Kennedy J E 2005 Nat. Rev. Cancer 5 321
[2] Haar G T 2007 Prog. Biophys. Mol. Biol. 93 111
[3] Fry F J 1958 Am. J. Phys. Med. 37 152
[4] Fry W J and Fry F J 1960 IRE Trans. Bio-Med. Electron. ME-7 166
[5] Fry F J, Kossoff G, Eggleton R C and Dunn F 1970 J. Acoust. Soc. Am. 48 1413
[6] Ballantine H T, Bell E and Manlapaz J 1960 J. Neurosurg. 17 858
[7] Pernot M, Aubry J F, Tanter M, Thomas J L and Fink M 2003 Phys. Med. Biol. 48 2577
[8] Connor C W and Hynynen K 2004 IEEE Trans. Biomed. Eng. Cancer 51 1693
[9] McDannold N and Clement G T P 2010 J. Neurosurg. 66 323
[10] Martin E and Jolesz F A 2003 Acoust. Phys. 49 369
[11] Han Z Z, Ding X, Luo M Y and Jian X Q 1958 Appl. Acousstic 34 334 (in Chinese)
[12] Ding X, Wang Y Z, Zhang Q, Zhou W Z, Wang P G, Luo M Y and Jian X Q 2015 Phys. Med. Biol. 60 3975
[13] Qian Y H, Zhang Y Q, Huo R and Jian X Q 2018 J. TJMU. 24 369 (in Chinese)
[14] Bailey M R, Khokhlova V A, Sapozhnikov O A, Kargl S G and Crum L A 2003 Acoust. Phys. 49 369
[15] Gianmarco P, Jean F A, Mathias F and Mickael T 2011 Nat. Rev. Cancer 38 1207
[16] Damianou C and Hynynen K 1994 J. Acoust. Soc. Am. 95 1641
[17] Dewey W C, Hopwood L E, Sapareto S A and Gerweck L E 1977 J. Radiol. 123 463
[18] Wang T R, Dallapiazza R and Elias W J 2015 Int. J. Hyperthermia 31 285
[19] Coluccia D, Fandino J, Schwyzer L, O’Gorman R, Remonda L, Anon J, Martin E and Werner B 2014 J. Ther. Ultrasound 2 17
[20] Iacopino D G, Gagliardo C and Giugno A 2015 Neurosurg. Focus 44 E7
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!