CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility |
Zhao-Yong Jiao(焦照勇)1, Yi-Ran Wang(王怡然)1, Yong-Liang Guo(郭永亮)1,2, and Shu-Hong Ma(马淑红)1,† |
1 School of Physics, Henan Normal University, Xinxiang 453007, China; 2 School of Science, Henan Institute of Technology, Xinxiang 453003, China |
|
|
Abstract By using first-principles calculation, we study the properties of h-BN/BC3 heterostructure and the effects of external electric fields and strains on its electronic and optical properties. It is found that the semiconducting h-BN/BC3 has good dynamical stability and ultrahigh stiffness, enhanced electron mobility, and well-preserved electronic band structure as the BC3 monolayer. Meanwhile, its electronic band structure is slightly modified by an external electric field. In contrast, applying an external strain can mildly modulate the electronic band structure of h-BN/BC3 and the optical property exhibits an apparent redshift under a compressive strain relative to the pristine one. These findings show that the h-BN/BC3 hybrid can be designed as optoelectronic device with moderately strain-tunable electronic and optical properties.
|
Received: 24 November 2020
Revised: 15 January 2021
Accepted manuscript online: 03 February 2021
|
PACS:
|
68.35.-p
|
(Solid surfaces and solid-solid interfaces: structure and energetics)
|
|
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904081) and the Natural Science Foundation of Henan Province, China (Grant Nos. 202300410247 and 21A140013). |
Corresponding Authors:
Shu-Hong Ma
E-mail: mash.phy@htu.edu.cn
|
Cite this article:
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红) Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility 2021 Chin. Phys. B 30 076801
|
[1] Schleder G R, Acosta C M and Fazzio A 2020 ACS Appl. Mater. Inter. 12 20149 [2] Jiang X, Kuklin A V, Baev A, Ge Y, Ågren H, Zhang H and Prasad P N 2020 Phys. Rep. 848 1 [3] Cheng R, Wang F, Yin L, Xu K, Ahmed Shifa T, Wen Y, Zhan X, Li J, Jiang C, Wang Z and He J 2017 Appl. Phys. Lett. 110 173507 [4] Zhao J, Zeng H and Zhou X 2019 Carbon 145 1 [5] Joo M K, Moon B H, Ji H, Han G H, Kim H, Lee G, Lim S C, Suh D and Lee Y H 2016 Nano Lett. 16 6383 [6] Kim K K, Lee H S and Lee Y H 2018 Chem. Soc. Rev. 47 6342 [7] Wang W, Lei W, Zhang X J, Li H, Tang X and Ming X 2020 Chin. Phys. B 29 056201 [8] Ma X, Zhang R, An C, Wu S, Hu X and Liu J 2019 Chin. Phys. B 28 037803 [9] Aeschlimann S, Rossi A, Chávez-Cervantes M, Krause R, Arnoldi B, Stadtmüller B, Aeschlimann M, Forti S, Fabbri F, Coletti C and Gierz I 2020 Sci. Adv. 6 0761 [10] Sajjad M, Makarov V, Mendoza F, Sultan M S, Aldalbahi A, Feng P X, Jadwisienczak W M, Weiner B R and Morell G 2019 Nanomaterials 9 925 [11] Chen X K, Pang M, Chen T, Du D and Chen K Q 2020 ACS Appl. Mater. Inter. 12 15517 [12] Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T and Moriyama S 2020 ACS Appl. Mater. Inter. 12 8533 [13] De Sanctis A, Mehew J D, Alkhalifa S, Withers F, Craciun M F and Russo S 2018 Nano Lett. 18 7919 [14] Wang J, Yao Q, Huang C W, Zou X, Liao L, Chen S, Fan Z, Zhang K, Wu W, Xiao X, Jiang C and Wu W W 2016 Adv. Mater. 28 8302 [15] Su J, Feng L P, Zheng X, Hu C, Lu H and Liu Z 2017 ACS Appl. Mater. Inter. 9 40940 [16] Pande G, Siao J Y, Chen W L, Lee C J, Sankar R, Chang Y M, Chen C D, Chang W H, Chou F C and Lin M T 2020 ACS Appl. Mater. Inter. 12 18667 [17] Liu B, Zhao Y Q, Yu Z L, Wang L Z and Cai M Q 2018 J. Colloid Interface Sci. 513 677 [18] Afzal A M, Javed Y, Akhtar Shad N, Iqbal M Z, Dastgeer G, Munir Sajid M and Mumtaz S 2020 Nanoscale 12 3455 [19] Li Q, Liu M, Zhang Y and Liu Z 2016 Small 12 32 [20] Guo Q, Wang G, Kumar A and Pandey R 2017 Nanotechnology 28 475708 [21] Gwan-Hyoung Lee, Cui X, Kim Y D, Arefe G, Zhang X, Lee C H, Ye F, Watanabe K, Taniguchi T, Kim P and Hone J 2015 ACS Nano 9 7019 [22] Pham K D and Nguyen C V 2018 Diam. Relat. Mater. 88 151 [23] Zhang Y, Wu Z F, Gao P F, Fang D Q, Zhang E H and Zhang S L 2018 RSC Adv. 8 1686 [24] Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C and Rabczuk T 2019 Carbon 149 733 [25] Behzad S 2017 Surf. Sci. 665 37 [26] Zhang H, Liao Y, Yang G and Zhou X 2018 ACS Omega 3 10517 [27] Luo M, Xu Y E and Zhang Q X 2018 Solid State Comm. 273 44 [28] Yuan P F, Han J N, Fan Z Q, Zhang Z H and Wang C Z 2020 J. Phys.: Condens. Matter. 32 475001 [29] Xie Z, Sun F, Yao R, Zhang Y, Zhang Y, Zhang Z, Fan J, Ni L and Duan L 2019 Appl. Surf. Sci. 475 839 [30] Zeng H, Zhao J, Cheng A Q, Zhang L, He Z and Chen R S 2018 Nanotechnology 29 075201 [31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [33] Grimme S 2006 J. Comput. Chem. 27 1787 [34] Monkhorst H J 1977 Phys. Rev. B 16 1748 [35] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 [36] Wang Y R, Jiao Z Y, Ma S H and Guo Y L 2019 J. Power Sour. 413 117 [37] Sánchez-Monroy X, Torres-Arenas J and Gil-Villegas A 2019 J. Chem. Phys. 150 144507 [38] Zhao T, Zhang S, Guo Y and Wang Q 2016 Nanoscale 8 233 [39] ahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453 [40] Fu Z H, Zhang Q F, Legut D, Si C, Germann T C, Lookman T, Du S Y, Francisco J S and Zhang R F 2016 Phys. Rev. B 94 104103 [41] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 [42] Shen N F, Yang X D, Wang X X, Wang G H and Wan J G 2020 Chem. Phys. Lett. 749 137430 [43] Fivaz R and Mooser E 1967 Phys. Rev. 163 743 [44] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 [45] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [46] Tan C, Yang Q, Meng R, Liang Q, Jiang J, Sun X, Ye H and Chen X P 2016 J. Mater. Chem. C 4 8171 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|