INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex |
Yun-Qiang Bian(边运强)†, Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华)‡ |
Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China |
|
|
Abstract The hybrid atomistic structure-based model has been validated to be effective in investigation of G-quadruplex folding. In this study, we performed large-scale conventional all-atom simulations to complement the folding mechanism of human telomeric sequence Htel24 revealed by a multi-basin hybrid atomistic structure-based model. Firstly, the real time-scale of folding rate, which cannot be obtained from the structure-based simulations, was estimated directly by constructing a Markov state model. The results show that Htel24 may fold as fast as on the order of milliseconds when only considering the competition between the hybrid-1 and hybrid-2 G-quadruplex conformations. Secondly, in comparison with the results of structure-based simulations, more metastable states were identified to participate in the formation of hybrid-1 and hybrid-2 conformations. These findings suggest that coupling the hybrid atomistic structure-based model and the conventional all-atom model can provide more insights into the folding dynamics of DNA G-quadruplex. As a result, the multiscale computational framework adopted in this study may be useful to study complex processes of biomolecules involving large conformational changes.
|
Received: 06 November 2020
Revised: 01 January 2021
Accepted manuscript online: 01 February 2021
|
PACS:
|
87.18.Nq
|
(Large-scale biological processes and integrative biophysics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504043, 61671107, 31670727, and 61771093), the Science Foundation of Shandong Province of China (Grant No. ZR2016JL027), the Taishan Young Scholars Program of Shandong Province of China (Grant No. tsqn20161049), and the Youth Science and Technology Innovation Plan of Universities in Shandong, China (Grant No. 2019KJE007). |
Corresponding Authors:
Yun-Qiang Bian, Ji-Hua Wang
E-mail: bianyunqiang@gmail.com;jhw25336@126.com
|
Cite this article:
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华) Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex 2021 Chin. Phys. B 30 078702
|
[1] Bochman M L, Paeschke K and Zakian V A 2012 Nat. Rev. Genet. 13 770 [2] Lipps H J and Rhodes D 2009 Trends Cell Biol. 19 414 [3] Davis J T 2004 Angew. Chem. Int. Ed. 43 668 [4] Tan D J Y, Winnerdy F R, Lim K W and Tu A 2020 Nucleic Acids Res. 48 11162 [5] Bian Y, Song F, Zhang J, Yu J, Wang J and Wang W 2020 J. Chem. Theory Comput. 16 5936 [6] Quynh T, Nguyen N and Lim K W 2020 J. Phys. Chem. B 124 5122 [7] Stadlbauer P, Kührová P, Vicherek L, Banáš P, Otyepka M, Trantírek L and Šponer J 2019 Nucleic Acids Res. 47 7276 [8] Gray R D, Trent J O, Arumugam S and Chaires J B 2019 J. Phys. Chem. Lett. 10 1146 [9] Ducani C, Bernardinelli G, Högberg B, Keppler B K and Terenzi A 2019 J. Am. Chem. Soc. 141 10205 [10] You H, Guo S, Le S, Tang Q, Yao M, Zhao X and Yan J 2018 J. Phys. Chem. Lett. 9 811 [11] Luo D and Mu Y 2016 J. Phys. Chem. B 120 4912 [12] Largy E, Marchand A, Amrane S, Gabelica V and Mergny J L 2016 J. Am. Chem. Soc. 138 2780 [13] Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L and Birkedal V 2016 Nucleic Acids Res. 44 464 [14] Tippana R, Hwang H, Opresko P L, Bohr V A, and Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448 [15] Greco M L, Kotar A, Rigo R, Cristofari C, Plavec J and Sissi C 2017 Nucleic Acids Res. 45 10132 [16] Kogut M, Kleist C and Czub J 2016 Nucleic Acids Res. 44 3020 [17] Gray R D, Trent J O and Chaires J B 2014 J. Mol. Biol. 426 1629 [18] Kuo M H J, Wang Z F, Tseng T Y, Li M H, Hsu S T D, Lin J J and Chang T C 2015 J. Am. Chem. Soc. 137 210 [19] Li W, Hou X, Wang P, Xi X and Li M 2013 J. Am. Chem. Soc. 135 6423 [20] Islam B, Stadlbauer P, Krepl M, Koča J, Neidle S, Haider S and Šponer J 2015 Nucleic Acids Res. 43 8673 [21] David Wilson W and Paul A 2014 J. Mol. Biol. 426 1625 [22] Shim J W, Tan Q and Gu L Q 2009 Nucleic Acids Res. 37 972 [23] Bian Y, Tan C, Wang J, Sheng Y, Zhang J and Wang W 2014 PLoS Comput. Biol. 10 e1003562 [24] Bian Y, Song F, Cao Z, Zhao L, Yu J, Guo X and Wang J 2018 Biophys. J. 114 1529 [25] Yang C, Kulkarni M, Lim M and Pak Y 2017 Nucleic Acids Res. 45 12648 [26] Hackett J A, Feldser D M and Greider C W 2001 Cell 106 275 [27] Balasubramanian S, Hurley L H and Neidle S 2011 Nat Rev Drug Discov 10 261 [28] Tawani A, Amanullah A, Mishra A, and Kumar A 2016 Sci. Rep. 6 39239 [29] Phan A T 2010 FEBS J. 277 1107 [30] Parkinson G N, Lee M P H and Neidle S 2002 Nature 417 876 [31] Patel D J, Phan A T and Kuryavyi V 2007 Nucleic Acids Res. 35 7429 [32] Lim K W, Amrane S, Bouaziz S, Xu W, Mu Y, Patel D J, Luu K N and Phan A T 2009 J. Am. Chem. Soc. 131 4301 [33] Ambrus A, Chen D, Dai J, Bialis T, Jones R A and Yang D 2006 Nucleic Acids Res. 34 2723 [34] Phan A T, Modi Y S and Patel D J 2004 J. Am. Chem. Soc. 126 8710 [35] Dai J, Carver M, Punchihewa C, Jones R A and Yang D 2007 Nucleic Acids Res. 35 4927 [36] Le H T, Miller M C, Buscaglia R, Dean W L, Holt P A, Chaires J B and Trent J O 2012 Org. Biomol. Chem. 10 9393 [37] Agrawal P, Hatzakis E, Guo K, Carver M and Yang D 2013 Nucleic Acids Res. 41 10584 [38] Choi J and Majima T 2011 Chem. Soc. Rev. 40 5893 [39] Hänsel R, Löhr F, Foldynová-Trantírková S, Bamberg E, Trantírek L and Dötsch V 2011 Nucleic Acids Res. 39 5768 [40] Heddi B and Phan A T 2011 J. Am. Chem. Soc. 133 9824 [41] Kim B G, Long J, Dubins D N and Chalikian T V 2016 J. Phys. Chem. B 120 4963 [42] Webba da Silva M 2007 Chem.-A Eur. J. 13 9738 [43] Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S and Otyepka M 2016 Biochim. Biophys. Acta 1861 1246 [44] Marchand A and Gabelica V 2016 Nucleic Acids Res. 44 10999 [45] Bessi I, Jonker H R A, Richter C and Schwalbe H 2015 Angew. Chem. Int. Ed. 54 8444 [46] Aznauryan M, Sondergaard S, Noer S L, Schiott B and Birkedal V 2016 Nucleic Acids Res. 44 11024 [47] Stadlbauer P, Kührová P, Banáš P, Koča J, Bussi G, Trantírek L, Otyepka M and Šponer J 2015 Nucleic Acids Res. 43 9626 [48] Stadlbauer P, Trantírek L, Cheatham T E, Koča J and Šponer J 2014 Biochimie 105 22 [49] Stadlbauer P, Krepl M, Cheatham T E, Koča J and Šponer J 2013 Nucleic Acids Res. 41 7128 [50] Islam B, Stadlbauer P, GilLey A, Pérez-Hernández G, Haider S, Neidle S, Bussi G, Banas P, Otyepka M and Šponer J 2017 J. Chem. Theory Comput. 13 2458 [51] Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S and Šponer J 2018 J. Chem. Theory Comput. 14 5011 [52] Stadlbauer P, Mazzanti L, Cragnolini T, Wales D J, Derreumaux P, Pasquali S and Šponer J 2016 J. Chem. Theory Comput. 12 6077 [53] Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S and Šponer J 2017 J. Chem. Phys. 147 152715 [54] Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre J F, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Nguyen P H and Derreumaux P 2014 Chem. Soc. Rev. 43 4871 [55] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. 298 937 [56] Hayes R L, Noel J K, Whitford P C, Mohanty U, Sanbonmatsu K Y and Onuchic J N 2014 Biophys. J. 106 1508 [57] Cho S S, Pincus D L and Thirumalai D 2009 Proc. Natl. Acad. Sci. USA 106 17349 [58] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550 [59] Sutto L, Mereu I and Gervasio F L 2011 J. Chem. Theory Comput. 7 4208 [60] Bian Y, Ren W, Song F, Yu J and Wang J 2018 J. Chem. Phys. 148 204107 [61] Lyman E and Zuckerman D M 2006 J. Chem. Theory Comput. 2 656 [62] Lyman E, Ytreberg F M and Zuckerman D M 2006 Phys. Rev. Lett. 96 028105 [63] Li W F, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504 [64] Terakawa T and Takada S 2011 Biophys. J. 101 1450 [65] Christen M and van Gunsteren W F 2006 J. Chem. Phys. 124 154106 [66] Moritsugu K, Terada T and Kidera A 2010 J. Chem. Phys. 133 224105 [67] Moritsugu K Terada T and Kidera A 2012 J. Am. Chem. Soc. 134 7094 [68] Reith D, Putz M and Muller-Plathe F 2003 J. Comput. Chem. 24 1624 [69] Izvekov S and Voth G A 2005 J. Phys. Chem. B 109 2469 [70] Thorpe I F, Zhou J and Voth G A 2008 J. Phys. Chem. B 112 13079 [71] Neri M, Anselmi C, Cascella M, Maritan A and Carloni P 2005 Phys. Rev. Lett. 95 218102 [72] Praprotnik M, Delle Site L and Kremer K 2008 Annu. Rev Phys. Chem. 59 545 [73] Li W F, Yoshii H, Hori N, Kameda T and Takada S 2010 Methods 52 106 [74] Li W F and Takada S 2010 Biophys. J. 99 3029 [75] Li W F and Takada S 2009 J. Chem. Phys. 130 214108 [76] Pande V S, Beauchamp K and Bowman G R 2010 Methods 52 99 [77] Noé F, Schütte C, Vanden-Eijnden E, Reich L and Weikl T R 2009 Proc. Natl. Acad. Sci. USA 106 19011 [78] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435 [79] Scherer M K, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner N, Wehmeyer C, Prinz J H and Noé F 2015 J. Chem. Theory Comput. 11 5525 [80] Pérez I, Marchán A, Svozil D, Šponer J, Cheatham T E, Laughton C A and Orozco M 2017 Biophys. J. 92 3817 [81] Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banás P, Koča J, Cheatham T E, Jurečka P and Šponer J 2012 J. Chem. Theory Comput. 8 2506 [82] Zgarbová M, Luque F J, Šponer J, Cheatham T E, Otyepka M and Jurečka P 2013 J. Chem. Theory Comput. 9 2339 [83] Chattopadhyaya R, Meador W E, Means A R and Quiocho F A 1992 J. Mol. Biol. 228 1177 [84] Chu X, Liu F, Maxwell B A, Wang Y and Suo Z 2014 PLoS Comput. Biol. 10 e1003804 [85] Wang Y, Tang C, Wang E K and Wang J 2012 PLoS Comput. Biol. 8 e1002471 [86] Wang Y, Gan L, Wang E K and Wang J 2012 J. Chem. Theory Comput. 9 84 [87] Okazaki K, Koga N, Takada S, Onuchic J N and Wolynes P G 2006 Proc. Natl. Acad. Sci. USA 103 11844 [88] Liu F, Chua X, Lu H P and Wang J 2017 Proc. Natl. Acad. Sci. USA 114 E3927 [89] Röblitz S and Weber M 2013 Adv. Data Anal. Classif. 7 147 [90] Schwantes C R and Pande V S 2013 J. Chem. Theory Comput. 9 2000 [91] Noé F, Wu H, Prinz J H and Plattner N 2013 J. Chem. Phys. 139 184114 [92] Hou X M, Fu Y B, Wu W Q, Wang L, Teng F Y, Xie P, Wang P Y and Xi X G 2017 Nucleic Acids Res. 45 11401 [93] Mashimo T, Yagi H, Sannohe Y, Rajendran A and Sugiyama H 2010 J. Am. Chem. Soc. 132 14910 [94] Li W F, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|