Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078702    DOI: 10.1088/1674-1056/abe1a7
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex

Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华)
Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
Abstract  The hybrid atomistic structure-based model has been validated to be effective in investigation of G-quadruplex folding. In this study, we performed large-scale conventional all-atom simulations to complement the folding mechanism of human telomeric sequence Htel24 revealed by a multi-basin hybrid atomistic structure-based model. Firstly, the real time-scale of folding rate, which cannot be obtained from the structure-based simulations, was estimated directly by constructing a Markov state model. The results show that Htel24 may fold as fast as on the order of milliseconds when only considering the competition between the hybrid-1 and hybrid-2 G-quadruplex conformations. Secondly, in comparison with the results of structure-based simulations, more metastable states were identified to participate in the formation of hybrid-1 and hybrid-2 conformations. These findings suggest that coupling the hybrid atomistic structure-based model and the conventional all-atom model can provide more insights into the folding dynamics of DNA G-quadruplex. As a result, the multiscale computational framework adopted in this study may be useful to study complex processes of biomolecules involving large conformational changes.
Keywords:  molecular dynamics simulation      structure-based model      all-atom model      DNA G-quadruplex  
Received:  06 November 2020      Revised:  01 January 2021      Accepted manuscript online:  01 February 2021
PACS:  87.18.Nq (Large-scale biological processes and integrative biophysics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504043, 61671107, 31670727, and 61771093), the Science Foundation of Shandong Province of China (Grant No. ZR2016JL027), the Taishan Young Scholars Program of Shandong Province of China (Grant No. tsqn20161049), and the Youth Science and Technology Innovation Plan of Universities in Shandong, China (Grant No. 2019KJE007).
Corresponding Authors:  Yun-Qiang Bian, Ji-Hua Wang     E-mail:  bianyunqiang@gmail.com;jhw25336@126.com

Cite this article: 

Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华) Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex 2021 Chin. Phys. B 30 078702

[1] Bochman M L, Paeschke K and Zakian V A 2012 Nat. Rev. Genet. 13 770
[2] Lipps H J and Rhodes D 2009 Trends Cell Biol. 19 414
[3] Davis J T 2004 Angew. Chem. Int. Ed. 43 668
[4] Tan D J Y, Winnerdy F R, Lim K W and Tu A 2020 Nucleic Acids Res. 48 11162
[5] Bian Y, Song F, Zhang J, Yu J, Wang J and Wang W 2020 J. Chem. Theory Comput. 16 5936
[6] Quynh T, Nguyen N and Lim K W 2020 J. Phys. Chem. B 124 5122
[7] Stadlbauer P, Kührová P, Vicherek L, Banáš P, Otyepka M, Trantírek L and Šponer J 2019 Nucleic Acids Res. 47 7276
[8] Gray R D, Trent J O, Arumugam S and Chaires J B 2019 J. Phys. Chem. Lett. 10 1146
[9] Ducani C, Bernardinelli G, Högberg B, Keppler B K and Terenzi A 2019 J. Am. Chem. Soc. 141 10205
[10] You H, Guo S, Le S, Tang Q, Yao M, Zhao X and Yan J 2018 J. Phys. Chem. Lett. 9 811
[11] Luo D and Mu Y 2016 J. Phys. Chem. B 120 4912
[12] Largy E, Marchand A, Amrane S, Gabelica V and Mergny J L 2016 J. Am. Chem. Soc. 138 2780
[13] Noer S L, Preus S, Gudnason D, Aznauryan M, Mergny J L and Birkedal V 2016 Nucleic Acids Res. 44 464
[14] Tippana R, Hwang H, Opresko P L, Bohr V A, and Myong S 2016 Proc. Natl. Acad. Sci. USA 113 8448
[15] Greco M L, Kotar A, Rigo R, Cristofari C, Plavec J and Sissi C 2017 Nucleic Acids Res. 45 10132
[16] Kogut M, Kleist C and Czub J 2016 Nucleic Acids Res. 44 3020
[17] Gray R D, Trent J O and Chaires J B 2014 J. Mol. Biol. 426 1629
[18] Kuo M H J, Wang Z F, Tseng T Y, Li M H, Hsu S T D, Lin J J and Chang T C 2015 J. Am. Chem. Soc. 137 210
[19] Li W, Hou X, Wang P, Xi X and Li M 2013 J. Am. Chem. Soc. 135 6423
[20] Islam B, Stadlbauer P, Krepl M, Koča J, Neidle S, Haider S and Šponer J 2015 Nucleic Acids Res. 43 8673
[21] David Wilson W and Paul A 2014 J. Mol. Biol. 426 1625
[22] Shim J W, Tan Q and Gu L Q 2009 Nucleic Acids Res. 37 972
[23] Bian Y, Tan C, Wang J, Sheng Y, Zhang J and Wang W 2014 PLoS Comput. Biol. 10 e1003562
[24] Bian Y, Song F, Cao Z, Zhao L, Yu J, Guo X and Wang J 2018 Biophys. J. 114 1529
[25] Yang C, Kulkarni M, Lim M and Pak Y 2017 Nucleic Acids Res. 45 12648
[26] Hackett J A, Feldser D M and Greider C W 2001 Cell 106 275
[27] Balasubramanian S, Hurley L H and Neidle S 2011 Nat Rev Drug Discov 10 261
[28] Tawani A, Amanullah A, Mishra A, and Kumar A 2016 Sci. Rep. 6 39239
[29] Phan A T 2010 FEBS J. 277 1107
[30] Parkinson G N, Lee M P H and Neidle S 2002 Nature 417 876
[31] Patel D J, Phan A T and Kuryavyi V 2007 Nucleic Acids Res. 35 7429
[32] Lim K W, Amrane S, Bouaziz S, Xu W, Mu Y, Patel D J, Luu K N and Phan A T 2009 J. Am. Chem. Soc. 131 4301
[33] Ambrus A, Chen D, Dai J, Bialis T, Jones R A and Yang D 2006 Nucleic Acids Res. 34 2723
[34] Phan A T, Modi Y S and Patel D J 2004 J. Am. Chem. Soc. 126 8710
[35] Dai J, Carver M, Punchihewa C, Jones R A and Yang D 2007 Nucleic Acids Res. 35 4927
[36] Le H T, Miller M C, Buscaglia R, Dean W L, Holt P A, Chaires J B and Trent J O 2012 Org. Biomol. Chem. 10 9393
[37] Agrawal P, Hatzakis E, Guo K, Carver M and Yang D 2013 Nucleic Acids Res. 41 10584
[38] Choi J and Majima T 2011 Chem. Soc. Rev. 40 5893
[39] Hänsel R, Löhr F, Foldynová-Trantírková S, Bamberg E, Trantírek L and Dötsch V 2011 Nucleic Acids Res. 39 5768
[40] Heddi B and Phan A T 2011 J. Am. Chem. Soc. 133 9824
[41] Kim B G, Long J, Dubins D N and Chalikian T V 2016 J. Phys. Chem. B 120 4963
[42] Webba da Silva M 2007 Chem.-A Eur. J. 13 9738
[43] Šponer J, Bussi G, Stadlbauer P, Kührová P, Banáš P, Islam B, Haider S, Neidle S and Otyepka M 2016 Biochim. Biophys. Acta 1861 1246
[44] Marchand A and Gabelica V 2016 Nucleic Acids Res. 44 10999
[45] Bessi I, Jonker H R A, Richter C and Schwalbe H 2015 Angew. Chem. Int. Ed. 54 8444
[46] Aznauryan M, Sondergaard S, Noer S L, Schiott B and Birkedal V 2016 Nucleic Acids Res. 44 11024
[47] Stadlbauer P, Kührová P, Banáš P, Koča J, Bussi G, Trantírek L, Otyepka M and Šponer J 2015 Nucleic Acids Res. 43 9626
[48] Stadlbauer P, Trantírek L, Cheatham T E, Koča J and Šponer J 2014 Biochimie 105 22
[49] Stadlbauer P, Krepl M, Cheatham T E, Koča J and Šponer J 2013 Nucleic Acids Res. 41 7128
[50] Islam B, Stadlbauer P, GilLey A, Pérez-Hernández G, Haider S, Neidle S, Bussi G, Banas P, Otyepka M and Šponer J 2017 J. Chem. Theory Comput. 13 2458
[51] Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S and Šponer J 2018 J. Chem. Theory Comput. 14 5011
[52] Stadlbauer P, Mazzanti L, Cragnolini T, Wales D J, Derreumaux P, Pasquali S and Šponer J 2016 J. Chem. Theory Comput. 12 6077
[53] Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S and Šponer J 2017 J. Chem. Phys. 147 152715
[54] Sterpone F, Melchionna S, Tuffery P, Pasquali S, Mousseau N, Cragnolini T, Chebaro Y, St-Pierre J F, Kalimeri M, Barducci A, Laurin Y, Tek A, Baaden M, Nguyen P H and Derreumaux P 2014 Chem. Soc. Rev. 43 4871
[55] Clementi C, Nymeyer H and Onuchic J N 2000 J. Mol. Biol. 298 937
[56] Hayes R L, Noel J K, Whitford P C, Mohanty U, Sanbonmatsu K Y and Onuchic J N 2014 Biophys. J. 106 1508
[57] Cho S S, Pincus D L and Thirumalai D 2009 Proc. Natl. Acad. Sci. USA 106 17349
[58] Li W, Wang W and Takada S 2014 Proc. Natl. Acad. Sci. USA 111 10550
[59] Sutto L, Mereu I and Gervasio F L 2011 J. Chem. Theory Comput. 7 4208
[60] Bian Y, Ren W, Song F, Yu J and Wang J 2018 J. Chem. Phys. 148 204107
[61] Lyman E and Zuckerman D M 2006 J. Chem. Theory Comput. 2 656
[62] Lyman E, Ytreberg F M and Zuckerman D M 2006 Phys. Rev. Lett. 96 028105
[63] Li W F, Wolynes P G and Takada S 2011 Proc. Natl. Acad. Sci. USA 108 3504
[64] Terakawa T and Takada S 2011 Biophys. J. 101 1450
[65] Christen M and van Gunsteren W F 2006 J. Chem. Phys. 124 154106
[66] Moritsugu K, Terada T and Kidera A 2010 J. Chem. Phys. 133 224105
[67] Moritsugu K Terada T and Kidera A 2012 J. Am. Chem. Soc. 134 7094
[68] Reith D, Putz M and Muller-Plathe F 2003 J. Comput. Chem. 24 1624
[69] Izvekov S and Voth G A 2005 J. Phys. Chem. B 109 2469
[70] Thorpe I F, Zhou J and Voth G A 2008 J. Phys. Chem. B 112 13079
[71] Neri M, Anselmi C, Cascella M, Maritan A and Carloni P 2005 Phys. Rev. Lett. 95 218102
[72] Praprotnik M, Delle Site L and Kremer K 2008 Annu. Rev Phys. Chem. 59 545
[73] Li W F, Yoshii H, Hori N, Kameda T and Takada S 2010 Methods 52 106
[74] Li W F and Takada S 2010 Biophys. J. 99 3029
[75] Li W F and Takada S 2009 J. Chem. Phys. 130 214108
[76] Pande V S, Beauchamp K and Bowman G R 2010 Methods 52 99
[77] Noé F, Schütte C, Vanden-Eijnden E, Reich L and Weikl T R 2009 Proc. Natl. Acad. Sci. USA 106 19011
[78] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[79] Scherer M K, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner N, Wehmeyer C, Prinz J H and Noé F 2015 J. Chem. Theory Comput. 11 5525
[80] Pérez I, Marchán A, Svozil D, Šponer J, Cheatham T E, Laughton C A and Orozco M 2017 Biophys. J. 92 3817
[81] Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banás P, Koča J, Cheatham T E, Jurečka P and Šponer J 2012 J. Chem. Theory Comput. 8 2506
[82] Zgarbová M, Luque F J, Šponer J, Cheatham T E, Otyepka M and Jurečka P 2013 J. Chem. Theory Comput. 9 2339
[83] Chattopadhyaya R, Meador W E, Means A R and Quiocho F A 1992 J. Mol. Biol. 228 1177
[84] Chu X, Liu F, Maxwell B A, Wang Y and Suo Z 2014 PLoS Comput. Biol. 10 e1003804
[85] Wang Y, Tang C, Wang E K and Wang J 2012 PLoS Comput. Biol. 8 e1002471
[86] Wang Y, Gan L, Wang E K and Wang J 2012 J. Chem. Theory Comput. 9 84
[87] Okazaki K, Koga N, Takada S, Onuchic J N and Wolynes P G 2006 Proc. Natl. Acad. Sci. USA 103 11844
[88] Liu F, Chua X, Lu H P and Wang J 2017 Proc. Natl. Acad. Sci. USA 114 E3927
[89] Röblitz S and Weber M 2013 Adv. Data Anal. Classif. 7 147
[90] Schwantes C R and Pande V S 2013 J. Chem. Theory Comput. 9 2000
[91] Noé F, Wu H, Prinz J H and Plattner N 2013 J. Chem. Phys. 139 184114
[92] Hou X M, Fu Y B, Wu W Q, Wang L, Teng F Y, Xie P, Wang P Y and Xi X G 2017 Nucleic Acids Res. 45 11401
[93] Mashimo T, Yagi H, Sannohe Y, Rajendran A and Sugiyama H 2010 J. Am. Chem. Soc. 132 14910
[94] Li W F, Wang J, Zhang J and Wang W 2015 Curr. Opin. Struct. Biol. 30 25
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
No Suggested Reading articles found!