ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser |
Xude Wang(汪徐德)1,†, Simin Yang(杨思敏)1, Mengqiu Sun(孙梦秋)1, Xu Geng(耿旭)1, Jieyu Pan (潘婕妤)1, Shuguang Miao(苗曙光)1, and Suwen Li(李素文)1,2 |
1 School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China; 2 Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China |
|
|
Abstract Multi-wavelength square pulses are generated in the dissipative soliton resonance (DSR) regime by a Yb-doped fiber laser (YDFL) with a long cavity configuration. The spectral filter effect provided by a passive fiber with low-stress birefringence facilitates the establishment of multi-wavelength operation. Through appropriate control of the cavity parameters, a multi-wavelength DSR pulse can be generated in single- and dual-waveband regions. When the multi-wavelength DSR works in the 1038 nm waveband, the pulse duration can broaden from 2 ns to 37.7 ns. The maximum intra-cavity pulse energy is 152.7 nJ. When the DSR works in the 1038 nm and 1080 nm wavebands, the pulse duration can be tuned from 2.3 ns to 10.5 ns with rising pump power. The emergence of the 1080 nm waveband is attributed to the stimulated Raman scattering (SRS) effect. Our work might help a deeper insight to be gained into DSR pulses in all-normal-dispersion YDFLs.
|
Received: 13 November 2020
Revised: 17 December 2020
Accepted manuscript online: 28 December 2020
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41875040), the Natural Science Foundation of Anhui Province, China (Grant No. 2008085MF211), the Foundation for Young Talents in College of Anhui Province (Grant No. gxyqZD2019034), and the Key Natural Science Research Project for Colleges and Universities of Anhui Province, China (Grant No. KJ2020A0027). |
Corresponding Authors:
Xude Wang
E-mail: wangxude@chnu.edu.cn
|
Cite this article:
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文) Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser 2021 Chin. Phys. B 30 064212
|
[1] Fermann M E and Hartl I 2013 Nat. Photon. 7 868 [2] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevičius A, Fermann M E and Ye J 2008 Nat. Photon. 2 355 [3] Kharenko D S, Podivilov E V, Apolonski A A and Babin S A 2012 Opt. Lett. 37 4104 [4] Peng J S, Zhan L, Gu Z C, Qian K, Luo S Y and Shen Q S 2012 Opt. Commun. 285 731 [5] Mao D, Liu X M, Wang L R, Lu H and Duan L N 2011 Opt. Express 19 3996 [6] Li X L, Zhang S M, Zhang H X, Han M M, Wen F and Yang Z J 2014 IEEE Photon. Technol. Lett. 26 2082 [7] Semaan G, Braham F B, Salhi M, Meng Y C, Bahloul F and Sanchez F 2016 Opt. Express 24 8399 [8] Wu T Y, Dou Z Y, Zhang B and Hou J 2020 Chin. Phys. B 29 014202 [9] Duan L N, Wen J, Fan W and Wang W 2017 Chin. Phys. B 26 104205 [10] Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T and Ming H 2012 Opt. Lett. 37 1334 [11] Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 Phys. Rev. A 78 023830 [12] Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580 [13] Deng Z S, Zhao G K, Yuan J Q, Lin J P, Chen H J, Liu H Z, Luo A P, Cui H, Luo Z C and Xu W C 2017 Opt. Lett. 42 4517 [14] Zhao K J, Wang P, Ding Y H, Yao S Y, Gui L L, Xiao X S and Yang C X 2019 Appl. Phys. Express 12 012002 [15] Semaan G, Braham F B, Fourmont J, Salhi M, Bahloul F and Sanchez F 2016 Opt. Lett. 41 4767 [16] Mei L, Chen G L, Xu L X, Zhang X M, Gu C, Sun B and Wang A T 2014 Opt. Lett. 39 3235 [17] Zhao N, Liu M, Liu H, Zheng X W, Ning Q Y, Luo A P, Luo Z C and Xu W C 2014 Opt. Express 22 10906 [18] Wang H, Du T J, Li Y H, Zou J H, Wang K J, Zheng F Y, Fu J F, Yang J H, Fu HY and Luo Z Q 2019 Chin. Opt. Lett. 17 030602 [19] Wang Z K and Wu W D 2021 Opt. Laser Technol. 133 106503 [20] Lyu Y J, Shi H X, Wei C, Li H P, Li J F and Liu Y 2017 Photon. Res. 5 612 [21] Wang Y F, Li L, Zhao J Q, Wang S, Shu C J, Su L, Tang D Y, Shen D Y and Zhao L M 2019 IEEE Photon. J. 11 1500509 [22] Yu H L, Wang X L, Zhou P, Xu X J and Chen J B 2015 IEEE Photon. Technol. Lett. 27 737 [23] Cao Y F, Jia D F, Liu T H, Yang T X, Wang Z Y and Ge C F 2017 Appl. Opt. 56 6742 [24] Semaan G, Niang A, Salhi M and Sanchez F 2017 Laser Phys. Lett. 14 055401 [25] Grelu P, Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2010 J. Opt. Soc. Am. B 27 2336 [26] Runge A F J, Aguergaray C, Broderick N G R and Erkintalo M 2014 Opt. Lett. 39 319 [27] Jin X X, Wang X, Wang X L and Zhou P 2015 Appl. Opt. 54 8260 [28] Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2014 Opt. Express 22 11417 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|