Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064211    DOI: 10.1088/1674-1056/abd76b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity

Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平)
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
Abstract  For a three-level atom, two nondegenerate (even microwave and optical) electric dipole transitions are usually allowed; for either of these, the fluorescence spectra are well-described in terms of spontaneous transitions from a triplet of dressed sublevels to an adjacent lower-lying triplet. When the three dressed sublevels are equally spaced from each other, a remarkable feature known as degenerate cascade fluorescence takes place, which displays a five-peaked structure. We show that a single cavity can make all the spectral lines extremely narrow, whether they arise from cavity-coupled or cavity-free transitions. This effect is based on intrinsic cascade lasing feedback and makes it possible to use a single microwave cavity (even a bad cavity) to narrow the spectral lines in the optical frequency regime.
Keywords:  resonance fluorescence      narrow spectral lines      microwave cavity  
Received:  23 November 2020      Revised:  19 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Bx  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61875067 and 61178021).
Corresponding Authors:  Xiang-Ming Hu     E-mail:  xmhu@mail.ccnu.edu.cn

Cite this article: 

Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平) Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity 2021 Chin. Phys. B 30 064211

[1] Loudon R 2000 The Quantum Theory of Light 3rd ed (Oxford: Oxford University Press)
[2] Walls D F and Milburn G J 2008 Quantum Optics 2nd ed (Berlin: Springer-Verlag)
[3] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[4] Gardiner C W and Zoller P 2000 Quantum Noise 2nd ed (Berlin: Springer-Verlag)
[5] Carmichael H J 2002 Statistical Methods in Quantum Optics 2nd ed (Berlin: Springer)
[6] Meystre P and Sargent III M 2007 Elements of Quantum Optics 4th ed (Berlin: Springer-Verlag)
[7] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-photon Interactions (New York: Wiley)
[8] Boyd R W 2008 Nonlinear Optics 3rd ed (New York: Elsevier)
[9] Narducci L M, Scully M O, Oppo G L, Ru P and Tredicce J R R 1990 Phys. Rev. A 42 1630
[10] Zhu S Y, Narducci L M and Scully M O 1995 Phys. Rev. A 52 4791
[11] Agarwal G S 1996 Phys. Rev. A 54 R3734
[12] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
[13] Zhou P and Swain S 2000 Phys. Rev. A 56 3011
[14] Keitel C H 1999 Phys. Rev. Lett. 83 1307
[15] Freedhoff H and Quang T 1993 J. Opt. Soc. Am. B 10 1337
[16] Freedhoff H and Quang T 1994 Phys. Rev. Lett. 72 474
[17] Peng J S, Li G X, Zhou P and Swain S 2000 Phys. Rev. A 61 063807
[18] Berman P R 1994 Cavity Quantum Electrodynamics (New York: Academic Press)
[19] Kleppner D 1981 Phys. Rev. Lett. 47 233
[20] Goy P, Raimond J M, Gross M and Haroche S 1983 Phys. Rev. Lett. 50 1903
[21] Sanchez-Mondragon J, Narozhny N and Eberly J 1983 Phys. Rev. Lett. 51 550
[22] Haken H 1964 Z. Phys. 181 96
[23] Quang T and Freedhoff H 1993 Phys. Rev. A 47 2285
[24] Huang C, Hu X and Hu Q 2017 Opt. Express 26 4807
[25] Xue Y L, Zhang K, Feng B H and Li Z Y 2016 Chin. Phys. Lett. 33 74204
[26] Mollow B R 1969 Phys. Rev. 188 1969
[27] Mollow B R 1972 Phys. Rev. A 5 2217
[28] Wu F Y, Ezekiel S, Ducloy M and Mollow B R 1977 Phys. Rev. Lett. 38 1077
[29] Khitrova G, Valley J F and Gibbs H M 1988 Phys. Rev. Lett. 60 1126
[30] Mompart J and Corbalán R 2000 J. Opt. B: Quantum Semiclass. Opt. 2 R7
[31] Lezama A, Zhu Y, Kanskar M and Mossberg T W 1990 Phys. Rev. A 41 1576
[32] Lewenstein M, Zhu Y and Mossberg T W 1990 Phys. Rev. Lett. 64 3131
[33] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7717
[34] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7732
[35] Zakrzewski J, Lewenstein M and Mossberg T W 1991 Phys. Rev. A 44 7746
[36] Gauthier D J, Wu Q, Morin S E and Mossberg T W 1992 Phys. Rev. Lett. 68 464
[37] Zhu Y, Wu Q, Morin S and Mossberg T W 1990 Phys. Rev. Lett. 65 1200
[38] Lawande S V, D’Souza R and Puri R R 1987 Phys. Rev. A 36 3228
[39] Jayarao A S, Lawande S V and D’Souza R 1989 Phys. Rev. A 39 3464
[40] Gauthier D J, Zhu Y and Mossberg T W 1991 Phys. Rev. Lett. 66 2460
[41] Peng J S and Li G X 1998 Introduction to modern quantum optics (Singapore: World Scientific)
[42] Arimondo E 1996 Prog. Opt. 35 257
[43] Zibrov A S, Matsko A B and Scully M O 2002 Phys. Rev. Lett. 89 103601
[44] Li H B, Sautenkov V A, Rostovtsev Y V, Welch G R, Hemmer P R and Scully M O 2009 Phys. Rev. A 80 023820
[45] Hafezi M, Kim Z, Rolston S L, Orozco L A, Lev B L and Taylor J M 2012 Phys. Rev. A 85 020302(R)
[46] Zhao Y, Wu C K,Ham B S, Kim M K and Awad E 1997 Phys. Rev. Lett. 79 641
[47] Fleischhauer M, Keitel C H, Narducci L M, Scully M O, Zhu S Y and Zubairy M S 1992 Opt. Commun. 94 599
[48] Hu X M and Peng J S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 921
[49] Ferguson M, Ficek Z and Dalton B 1996 Phys. Rev. A 54 2379
[50] Macovei M, Evers J and Keitel C H 2004 Europhys. Lett. 68 391
[51] Drummond P D and Walls D F 1981 Phys. Rev. A 23 2563
[52] Carmichael H J, Walls D F, Drummond P D and Hassan S S 1983 Phys. Rev. A 27 3112
[53] Reid M D 1988 Phys. Rev. A 37 4792
[54] Jia W Z, Wei L F and Wang Z D 2011 Phys. Rev. A 83 023811
[55] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University)
[56] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[57] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[58] Jing M, Hu Y, Ma J, et al. 2020 Nat. Phys. 16 911
[59] Wu Y L, Li R, Rui Y, Jiang H F and Wu H B 2018 Acta Phys. Sin. 67 163201 (in Chinese)
[60] Hao L P, Xue Y M, Fan J B, et al. 2020 Chin. Phys. B 29 033201
[1] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[2] Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm
Yong-Zhou Xue(薛永洲), Ze-Sheng Chen(陈泽升), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川), De-Sheng Jiang(江德生), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权). Chin. Phys. B, 2017, 26(8): 084202.
[3] Two-dimensional atom localization induced by a squeezed vacuum
Fei Wang(王飞), Jun Xu(徐俊). Chin. Phys. B, 2016, 25(10): 104201.
[4] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang (刘畅), Wang Yan-Hui (王延辉). Chin. Phys. B, 2015, 24(1): 010602.
[5] Observation of linewidth narrowing due to a spontaneously generated coherence effect
Tian Si-Cong(田思聪), Wang Chun-Liang(王春亮), Kang Zhi-Hui(康智慧), Yang Xiu-Bin(杨秀彬) Wan Ren-Gang(万仁刚), Zhang Xiao-Jun(张晓军), Zhang Hang(张航), Jiang Yun(姜云), Cui Hai-Ning(崔海宁), and Gao Jin-Yue(高锦岳) . Chin. Phys. B, 2012, 21(6): 064206.
[6] Sideband entanglement in collective resonance fluorescence
Zhang Xue-Hua(张雪华) and Hu Xiang-Ming(胡响明) . Chin. Phys. B, 2011, 20(11): 114205.
[7] Atomic emission and cavity field spectra of the Jaynes-Cummings model
Li Fu-Li (李福利), Gao Shao-Yan (高韶燕), Zhao Yong-Tao (赵永涛). Chin. Phys. B, 2003, 12(8): 872-878.
No Suggested Reading articles found!