Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064213    DOI: 10.1088/1674-1056/abd769

An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra

Wei Nie(聂伟)1, Zhen-Yu Xu(许振宇)2, Rui-Feng Kan(阚瑞峰)2,†, Mei-Rong Dong(董美蓉)1,‡, and Ji-Dong Lu(陆继东)1
1 School of Electric Power, South China University of Technology, Guangzhou 510640, China;
2 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Anhui 230031, China
Abstract  A spectral profile reconstruction method that can be applied to incomplete saturated-absorption spectra is proposed and demonstrated. Through simulation and theoretical calculation, it is proved that compared with the traditional whole-profile fitting method, this new method can increase the concentration detection upper limit of a single absorption line by about 8.7 times. High-concentration water vapor is measured using TDLAS technology, the total water vapor pressure and the self-broadened half-width coefficient of the spectrum were simultaneously measured from incomplete saturated-absorption spectra and compared with high-precision pressure sensors and the HITRAN databases. Their maximum relative deviations were about 4.63% and 9.10%, respectively. These results show that the spectral profile reconstruction method has great application potential for expanding the dynamic range of single-line measurements to higher concentrations, especially for in-situ online measurements under complex conditions, such as over large temperature and concentration dynamic ranges.
Keywords:  absorption saturation      spectral profile reconstruction      TDLAS      pressure      self-broadened half-width coefficient  
Received:  16 November 2020      Revised:  22 December 2020      Accepted manuscript online:  30 December 2020
PACS:  42.62.Fi (Laser spectroscopy)  
  33.70.Jg (Line and band widths, shapes, and shifts)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization (Grant No. 2013A061401005) and the Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes (Grant No. KLB10004).
Corresponding Authors:  Rui-Feng Kan, Mei-Rong Dong     E-mail:;

Cite this article: 

Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东) An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra 2021 Chin. Phys. B 30 064213

[1] Goldenstein C S, Spearrin R M, Jeffries J B and Hanson R K 2017 Prog. Energy Combust. Sci. 60 132
[2] Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Sigrist M W and Dong F Z 2016 Opt. Express 24 A943
[3] Mihalcea R M, Baer D S and Hanson R K 1997 Appl. Opt. 36 8745
[4] Wei M, Ye Q H, Kan R F, Chen B, Yang C G, Xu Z Y, Chen X, Ruan J, Fan X L, Wang W, Hu M and Liu J G 2016 Chin. Phys. B 25 094210
[5] Weng W B, Brackmann C, Leffler T, Alden M and Li Z S 2019 Anal. Chem. 91 4719
[6] Qu Z C, Steinvall E, Ghorbani R and Schmidt F M 2016 Anal. Chem. 88 3754
[7] Thorin E and Schmidt F M 2020 Opt. Lett. 45 5230
[8] Nie W, Xu Z Y, Kan R F, Ruan J, Lao Y, Wang B and He Y B 2018 Sensors 18 2704
[9] Kan R F, Liu W Q, Zhang Y J, Liu J G, Wang M, Chen D, Chen J Y and Cui Y 2007 Chin. Opt. Lett. 4 116
[10] Sepman A, ögren Y, Gullberg M and Wiinikka H 2016 Appl. Phys. B 122 29
[11] Li J D, Peng Z M and Ding Y J 2020 Opt. Laser Eng. 126 105875
[12] Zhou X, Liu X, Jeffries J B and Hanson R K 2003 Meas. Sci. Technol. 14 1459
[13] Buchholz B, Afchine A, Klein A, Schiller C, Krämer M and Ebert V 2017 Environ. Sci. Technol. 10 35
[14] Salati S H and Khorsandi A 2014 Appl. Phys. B 116 521
[15] Peng Z M, Ding Y J, Che L, Li X H and Zhang K J 2011 Opt. Express 19 23104
[16] Chen M, Meng Z, Wang J F and Chen W 2015 Opt. Express 23 6803
[17] Abrarov S M, Quine B M and Jagpa R K 2010 J. Quant. Spectrosc. Radiat. Transf. 111 372
[18] Hui A K, Armstrong B H and Wray A A 1978 J. Quant. Spectrosc. Radiat. Transf. 19 509
[19] Axner O, Schmidt F M, Foltynowicz A, Gustafsson J, Omenetto N and Winefordner J D 2006 Appl. Spectrosc. 60 1217
[20] Demtröder W 1981 Laser Spectroscopy (Springer-Verlag)
[21] Bürkle S, Becker L G, Dreizler A and Wagner S 2018 Fuel 231 61
[22] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transf. 203 3
[23] Mchale L E, Hecobian A and Yalin A P 2016 Opt. Express 24 5523
[24] Xu Z Y, Kan R F, Ran J, Yao L, Fan X L and Liu J G 2016 In proceedings of Light, Energy and Environment: 2016 p. ETu2A.4
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[5] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[9] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[10] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!