Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Fine-grained uncertainty relation for open quantum system |
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊)† |
School of Physics, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract The fine-grained uncertainty relation (FUR) is investigated for accelerating open quantum system, which manifests the celebrated Unruh effect, a crucial piece of the jigsaw for combining relativity and quantum physics. For a single detector, we show that the inevitable Unruh decoherence can induce a smaller FUR uncertainty bound, which indicates an additional measurement uncertainty may exist. For an open system combined with two detectors, via a nonlocal retrieval game, the related FUR uncertainty bound is determined by the non-classical correlation of the system. By estimating the maximal violation of Bell inequality for an accelerating system, we show that the FUR uncertainty bound can be protected from Unruh decoherence, due to quantum correlation generated through Markovian dynamics.
|
Received: 25 January 2021
Revised: 23 March 2021
Accepted manuscript online: 31 March 2021
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
04.62.+v
|
(Quantum fields in curved spacetime)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075178) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM1049). |
Corresponding Authors:
Jun Feng
E-mail: j.feng@xjtu.edu.cn
|
Cite this article:
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊) Fine-grained uncertainty relation for open quantum system 2021 Chin. Phys. B 30 060315
|
[1] Heisenberg W 1927 Phys. 43 172 [2] Deutsch D 1983 Phys. Rev. Lett. 50 631 [3] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103 [4] Coles P J, Berta M, Tomamichel M and Wehner S 2017 Rev. Mod. Phys. 89 015002 [5] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659 [6] Li C F, Xu J S, Xu X Y, Li K and Guo G C 2011 Nat. Phys. 7 752 [7] Prevedel R, Hamel D R, Colbeck R, Fisher K and Resch K J 2011 Nat. Phys. 7 757 [8] Ming F, Wang D, Fan X, Shi W, Ye L and Chen J 2020 Phys. Rev. A 102 012206 [9] Wang D, Ming F, Song X, Ye L and Chen J 2020 Eur. Phys. J. C 80 800 [10] Hall M J W and Wiseman H M 2012 New J. Phys. 14 033040 [11] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506 [12] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133 [13] Wang D, Ming F, Hu M and Ye L 2019 Ann. Phys. 531 1900124 [14] Oppenheim J and Wehner S 2010 Science 330 1072 [15] Lv W M, Zhang C, Hu X M, Huang Y F, Cao H, Wang J, Hou Z B, Liu B H, Li C F and Guo G C 2019 Sci. Rep. 9 8748 [16] Pramanik T and Majumdar A S 2012 Phys. Rev. A 85 024103 [17] Dey A, Pramanik T and Majumdar A S 2013 Phys. Rev. A 87 012120 [18] Pramanik T, Kaplan M and Majumdar A S 2014 Phys. Rev. A 90 050305 [19] Orieux A, Kaplan M, Venuti V, Pramanik T, Zaquine I and Diamanti E 2018 J. Opt. 20 044006 [20] Pramanik T, Chowdhury P and Majumdar A S 2013 Phys. Rev. Lett. 110 020402 [21] Hanggi E and Wehner S 2013 Nat. Commun. 4 1670 [22] Ren L H and Fan H 2014 Phys. Rev. A 90 052110 [23] Benatti F and Floreanini R 2004 Phys. Rev. A 70 012112 [24] Martín-Martínez E, Aasen D and Kempf A 2013 Phys. Rev. Lett. 110 160501 [25] Takagi S 1986 Prog. Theor. Phys. Suppl. 88 1 [26] Unruh W G 1976 Phys. Rev. D 14 870 [27] Crispino L, Higuchi A and Matsas G E A 2008 Rev. Mod. Phys. 80 787 [28] Aspachs M, Adesso G and Fuentes I 2010 Phys. Rev. Lett. 105 151301 [29] Wang J, Tian Z, Jing J and Fan H 2014 Sci. Rep. 4 7195 [30] Martín-Martínez, Fuentes I and Mann R B 2011 Phys. Rev. Lett. 107 131301 [31] Benatti F, Floreanini R and Marzolino U 2010 Phys. Rev. A 81 012105 [32] Pozas-Kerstjens A and Martín-Martínez E 2015 Phys. Rev. D 92 064042 [33] Nesterov A I, Rodríguez Fernández M A, Berman G P and Wang X 2020 Phys. Rev. Research 2 043230 [34] Feng J, Zhang Y Z, Gould M D and Fan H 2013 Phys. Lett. B 726 527 [35] Feng J, Zhang Y Z, Gould M D and Fan H 2018 Europhys. Lett. 122 60001 [36] Hu J, Feng L, Zhang Z and Chin C 2019 Nat. Phys. 15 785 [37] Jin F, Chen H, Rong X, et al. 2016 Sci. China- Phys. Mech. Astron. 59 630302 [38] Friis N, Lee A R, Truong K, Sabín C, Solano E, Johansson G and Fuentes I 2013 Phys. Rev. Lett. 110 113602 [39] Richter B, Ter?as H, Omar Y and de Vega I 2017 Phys. Rev. A 96 053612 [40] Hu J and Yu H 2013 Phys. Rev. D 88 104003 [41] Gorini V, Kossakowski A and Surdarshan E C G 1976 J. Math. Phys. 17 821 [42] Lindblad G 1976 Commun. Math. Phys. 48 119 [43] Benatti F, Floreanini R and Piani M 2003 Phys. Rev. Lett. 91 070402 [44] Feng J, Zhang Y Z, Gould M D and Fan H 2015 Phys. Lett. B 743 198 [45] Feng J, Huang X, Zhang Y Z and Fan H 2018 Phys. Lett. B 786 403 [46] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880 [47] Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|