Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060305    DOI: 10.1088/1674-1056/abda31
GENERAL Prev   Next  

Practical decoy-state BB84 quantum key distribution with quantum memory

Xian-Ke Li(李咸柯)1,2,3, Xiao-Qian Song(宋小谦)1,2,3, Qi-Wei Guo(郭其伟)1, Xing-Yu Zhou(周星宇)1,2,3, and Qin Wang(王琴)1,2,3,†
1 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Telecommunication and Networks National Engineering Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  We generalize BB84 quantum key distribution (QKD) to the scenario where the receiver adopts a heralded quantum memory (QM). With the heralded QM, the valid dark count rate of the receiver's single photon detectors can be mitigated obviously, which will lower the quantum bit error rate, and thus improve the performance of decoy-state BB84 QKD systems in long distance range. Simulation results show that, with practical experimental system parameters, decoy-state BB84 QKD with QM can exhibit performance comparable to that of without QM in short distance range, and exhibit performance better than that without QM in long distance range.
Keywords:  quantum key distribution      quantum communication      quantum memory      decoy state  
Received:  14 October 2020      Revised:  31 December 2020      Accepted manuscript online:  11 January 2021
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306400 and 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 12074194 and 11774180), and the Leading-edge Technology Program of Jiangsu Provincial Natural Science Foundation, China (Grant No. BK20192001).
Corresponding Authors:  Qin Wang     E-mail:  qinw@njupt.edu.cn

Cite this article: 

Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴) Practical decoy-state BB84 quantum key distribution with quantum memory 2021 Chin. Phys. B 30 060305

[1] Bennett C H and Brassard G 1984 Proceddings of the IEEE International Conference on Computers, Systems and Signal Processing, 1999, Bangalore, India (IEEE, New York, 1984) p. 175
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[5] Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiéres F, Li M J, Nolan D, Martin A and Zbinden H 2018 Phys. Rev. Lett. 121 190502
[6] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[7] Abruzzo S, Kampermann H and Bruß D 2014 Phys. Rev. A 89 012301
[8] Novikova I, Walsworth R L and Xiao Y H 2012 Laser Photon. Rev. 6 333
[9] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A and Chen Y C 2018 Phys. Rev. Lett. 120 183602
[10] Riedl S, Lettner M, Vo C, Baur S, Rempe G and Dürr S 2012 Phys. Rev. A 85 022318
[11] Gündoǧan M, Ledingham P M, Almasi A, Cristiani M and Riedmatten H D 2012 Phys. Rev. Lett. 108 190504
[12] Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D and Tittel W 2015 Nat. Photon. 9 83
[13] Hosseini M, Sparkes B M, Campbell G, Lam P K and Buchler B C 2011 Nat. Commun. 2 174
[14] Namazi M, Kupchak C, Jordaan B, Shahrokhshahi R and Figueroa E 2017 Phys. Rev. Appl. 8 034023
[15] England D G, Fisher K A G, MacLean J P W, Bustard P J, Lausten R, Resch K J and Sussman B J 2015 Phys. Rev. Lett. 114 053602
[16] Ledingham P M, Munns J H D, Thomas S E, Champion T F M, Qiu C, Kaczmarek K T, Feizpour A, Poem E, Walmsley I A, Nunn J and Saunders D J 2016 Phys. Rev. Lett. 116 090501
[17] Namazi M, Vallone G, Jordaan B, Goham C, Shahrokhshahi R, Villoresi P and Figueroa E 2017 Phys. Rev. Appl. 8 064013
[18] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[19] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[20] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[21] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[22] Wang X B 2005 Phys. Rev. Lett. 94 230503
[23] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[24] Zhang C H, Luo S L, Guo G C and Wang Q 2015 Phys. Rev. A 92 022332
[25] Duan L M, Lukin M, Cirac L and Zoller P 2001 Nature 414 413
[26] Dou J P, Yang A L, Du M Y, Lao D, Gao J, Qiao L F, Li H, Pang X L, Feng Z, Tang H and Jin X M 2018 Commun. Phys. 1 55
[27] Duan L M, Cirac J I and Zoller P 2002 Phys. Rev. A 66 023818
[28] Gujarati T P, Wu Y K and Duan L M 2018 Phys. Rev. A 97 033826
[29] Wang Q, Zhang C H and Wang X B 2016 Phys. Rev. A 93 032312
[30] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Proceedings International Symposium on Information Theory (ISIT), 2004. p. 136
[31] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[32] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C and Karlsson A 2008 Phys. Rev. Lett. 100 090501
[33] Sabooni M, Li Q, Kröll S and Rippe L 2013 Phys. Rev. Lett. 110 133604
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[11] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[12] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[13] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[14] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[15] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
No Suggested Reading articles found!