Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060304    DOI: 10.1088/1674-1056/abd931
GENERAL Prev   Next  

Continuous-variable quantum key distribution based on photon addition operation

Xiao-Ting Chen(陈小婷)1, Lu-Ping Zhang(张露萍)1, Shou-Kang Chang(常守康)1, Huan Zhang(张欢)1, and Li-Yun Hu(胡利云)1,2,†
1 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China;
2 Key Laboratory of Optoelectronic and Telecommunication, Jiangxi Normal University, Nanchang 330022, China
Abstract  It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution (CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source. It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst.
Keywords:  non-Gaussian operations      continuous variable      quantum key distribution      photon-addition operation  
Received:  08 December 2020      Revised:  01 January 2021      Accepted manuscript online:  07 January 2021
PACS:  03.67.-a (Quantum information)  
  05.30.-d (Quantum statistical mechanics)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Wj (State reconstruction, quantum tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664017 and 11964013) and the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, China (Grant No. 20204BCJL22053).
Corresponding Authors:  Li-Yun Hu     E-mail:  hlyun@jxnu.edu.cn

Cite this article: 

Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云) Continuous-variable quantum key distribution based on photon addition operation 2021 Chin. Phys. B 30 060304

[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N L and Peev M 2009 Rev. Mod. Phys. 81 1301
[2] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[3] Wu G, Zhou C Y, Chen X L, Han X H and Zeng H P 2005 Acta Phys. Sin. 54 3622 (in Chinese)
[4] Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304
[5] Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys. 531 1800520
[6] Bang J Y and Berger M S 2006 Phys. Rev. D 74 125012
[7] Wootters W K and Zurek W H 1982 Nature 299 802
[8] Bencheikh K, Symul T, Jankovic A and Levenson J A 2001 J. Mod. Opt. 48 1903
[9] Ralph T C 2000 Phys. Rev. A 62 062306
[10] Usenko V C and Grosshans F 2015 Phys. Rev. A 92 062337
[11] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. 16 1364
[12] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[13] Liu W Q, Peng J Y, Huang P, Wang S Y, Wang T and Zeng G H 2018 Chin. Phys. B 27 070305
[14] Gong L H, Tian C, Li J F and Zou X F 2018 Quantum Inf. Process. 17 331
[15] He Y Q, Mao Y, Zhong H, Huang D and Guo Y 2020 Chin. Phys. B 29 050309
[16] Lim K Y, Suh C and Rhee J K 2019 Quantum Inf. Process. 18 73
[17] Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C, Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S and H Guo 2019 Quantum Sci. Technol. 4 035006
[18] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S and Guo H 2020 Phys. Rev. Lett. 125 010502
[19] Samsonov E, Goncharov R, Gaidash A, Kozubov A, Egorov V and Gleim A 2020 Sci. Rep. 10 10034
[20] Shen Y and Zou H X 2010 Acta Phys. Sin. 59 147308 (in Chinese)
[21] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[22] Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S and Zeng G H 2019 Phys. Rev. A 99 022322
[23] Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 020301
[24] Patron R G and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[25] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502
[26] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[27] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[28] Zhou J, Shi R H, Feng Y Y, Shi J J and Guo Y 2019 J. Phys. A 52 245303
[29] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317
[30] Ye W, Guo Y, Xia Y, Zhong H, Zhang H, Ding J Z and Hu L Y 2020 Acta Phys. Sin. 69 060301 (in Chinese)
[31] Wu J N, Liu S Y, Hu L Y, Huang J H, Duan Z L and Ji Y H 2015 J. Opt. Soc. Am. B 32 2299
[32] Guo Y, Ye W, Zhong Hand Liao Q 2019 Phys. Rev. A 99 032327
[33] Ye W, Zhong H, Liao Q, Huang D, Hu L Y and Guo Y 2019 Opt. Express 27 17186
[34] Hu L Y, Al-amri M, Liao Z Y and Zubairy M S 2020 Phys. Rev. A 102 012608
[35] Ye W, Zhang H, Wu X D, Hu L Y and Guo Y 2020 Quantum Inf. Process. 19 346
[36] Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X and Guo H 2016 Phys. Rev. A 93 012310
[37] Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S and Zeng G H 2018 Phys. Rev. A 97 042329
[38] Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324
[39] Benlloch C N, Patron R J, Shapiro J H and Cerf N J 2016 Phys. Rev. A 86 012328
[40] Yang Y 2016 J. Opt. Soc. Am. B 33 002545
[41] Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L J and Walmsley I 2013 Phys. Rev. A 87 022313
[42] Zhang S L and van Loock P 2010 Phys. Rev. A 82 062316
[43] X X Xu, L Y Hu and Z Y Liao 2018 J. Opt. Soc. Am. B 35 000174
[44] Hu L Y, Al-amri M, Liao Z Y and Zubariy M S 2019 Phys. Rev. A 100 052322
[45] Liu C J, Yu M, Ye W, Zhang H and Hu L Y 2020 Results Phys. 19 103616
[46] Xu X X 2015 Phys. Rev. A 92 012318
[47] Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310
[48] Zhou W D, Ye W, Liu C J, Hu L Y and Liu S Q 2018 Laser Phys. Lett. 15 065203
[49] Xu B J, Tang C M and Chen H 2013 Phys. Rev. A 87 062311
[50] Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S and Guo H 2015 Entropy 17 04547
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[7] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
No Suggested Reading articles found!