|
|
Continuous-variable quantum key distribution based on photon addition operation |
Xiao-Ting Chen(陈小婷)1, Lu-Ping Zhang(张露萍)1, Shou-Kang Chang(常守康)1, Huan Zhang(张欢)1, and Li-Yun Hu(胡利云)1,2,† |
1 Center for Quantum Science and Technology, Jiangxi Normal University, Nanchang 330022, China; 2 Key Laboratory of Optoelectronic and Telecommunication, Jiangxi Normal University, Nanchang 330022, China |
|
|
Abstract It is shown that the non-Gaussian operations can not only be used to prepare the nonclassical states, but also to improve the entanglement degree between Gaussian states. Thus these operations are naturally considered to enhance the performance of continuous variable quantum key distribution (CVQKD), in which the non-Gaussian operations are usually placed on the right-side of the entangled source. Here we propose another scheme for further improving the performance of CVQKD with the entangled-based scheme by operating photon-addition operation on the left-side of the entangled source. It is found that the photon-addition operation on the left-side presents both higher success probability and better secure key rate and transmission distance than the photon subtraction on the right-side, although they share the same maximal tolerable noise. In addition, compared to both photon subtraction and photon addition on the right-side, our scheme shows the best performance and the photon addition on the right-side is the worst.
|
Received: 08 December 2020
Revised: 01 January 2021
Accepted manuscript online: 07 January 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664017 and 11964013) and the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, China (Grant No. 20204BCJL22053). |
Corresponding Authors:
Li-Yun Hu
E-mail: hlyun@jxnu.edu.cn
|
Cite this article:
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云) Continuous-variable quantum key distribution based on photon addition operation 2021 Chin. Phys. B 30 060304
|
[1] Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N L and Peev M 2009 Rev. Mod. Phys. 81 1301 [2] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 [3] Wu G, Zhou C Y, Chen X L, Han X H and Zeng H P 2005 Acta Phys. Sin. 54 3622 (in Chinese) [4] Li H H, Gong L H and Zhou N R 2020 Chin. Phys. B 29 110304 [5] Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys. 531 1800520 [6] Bang J Y and Berger M S 2006 Phys. Rev. D 74 125012 [7] Wootters W K and Zurek W H 1982 Nature 299 802 [8] Bencheikh K, Symul T, Jankovic A and Levenson J A 2001 J. Mod. Opt. 48 1903 [9] Ralph T C 2000 Phys. Rev. A 62 062306 [10] Usenko V C and Grosshans F 2015 Phys. Rev. A 92 062337 [11] Zhu J, He G Q and Zeng G H 2007 Chin. Phys. 16 1364 [12] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303 [13] Liu W Q, Peng J Y, Huang P, Wang S Y, Wang T and Zeng G H 2018 Chin. Phys. B 27 070305 [14] Gong L H, Tian C, Li J F and Zou X F 2018 Quantum Inf. Process. 17 331 [15] He Y Q, Mao Y, Zhong H, Huang D and Guo Y 2020 Chin. Phys. B 29 050309 [16] Lim K Y, Suh C and Rhee J K 2019 Quantum Inf. Process. 18 73 [17] Zhang Y C, Li Z Y, Chen Z Y, Weedbrook C, Zhao Y J, Wang X Y, Huang Y D, Xu C C, Zhang X X, Wang Z Y, Li M, Zhang X Y, Zheng Z Y, Chu B J, Gao X Y, Meng N, Cai W W, Wang Z, Wang G, Yu S and H Guo 2019 Quantum Sci. Technol. 4 035006 [18] Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S and Guo H 2020 Phys. Rev. Lett. 125 010502 [19] Samsonov E, Goncharov R, Gaidash A, Kozubov A, Egorov V and Gleim A 2020 Sci. Rep. 10 10034 [20] Shen Y and Zou H X 2010 Acta Phys. Sin. 59 147308 (in Chinese) [21] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504 [22] Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S and Zeng G H 2019 Phys. Rev. A 99 022322 [23] Zhang S J, Xiao C, Zhou C, Wang X, Yao J S, Zhang H L and Bao W S 2020 Chin. Phys. B 29 020301 [24] Patron R G and Cerf N J 2006 Phys. Rev. Lett. 97 190503 [25] Furrer F, Franz T, Berta M, Leverrier A, Scholz V B, Tomamichel M and Werner R F 2012 Phys. Rev. Lett. 109 100502 [26] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [27] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317 [28] Zhou J, Shi R H, Feng Y Y, Shi J J and Guo Y 2019 J. Phys. A 52 245303 [29] Huang P, He G Q, Fang J and Zeng G H 2013 Phys. Rev. A 87 012317 [30] Ye W, Guo Y, Xia Y, Zhong H, Zhang H, Ding J Z and Hu L Y 2020 Acta Phys. Sin. 69 060301 (in Chinese) [31] Wu J N, Liu S Y, Hu L Y, Huang J H, Duan Z L and Ji Y H 2015 J. Opt. Soc. Am. B 32 2299 [32] Guo Y, Ye W, Zhong Hand Liao Q 2019 Phys. Rev. A 99 032327 [33] Ye W, Zhong H, Liao Q, Huang D, Hu L Y and Guo Y 2019 Opt. Express 27 17186 [34] Hu L Y, Al-amri M, Liao Z Y and Zubairy M S 2020 Phys. Rev. A 102 012608 [35] Ye W, Zhang H, Wu X D, Hu L Y and Guo Y 2020 Quantum Inf. Process. 19 346 [36] Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X and Guo H 2016 Phys. Rev. A 93 012310 [37] Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S and Zeng G H 2018 Phys. Rev. A 97 042329 [38] Zhang S L, Dong Y L, Zou X B, Shi B S and Guo G C 2013 Phys. Rev. A 88 032324 [39] Benlloch C N, Patron R J, Shapiro J H and Cerf N J 2016 Phys. Rev. A 86 012328 [40] Yang Y 2016 J. Opt. Soc. Am. B 33 002545 [41] Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L J and Walmsley I 2013 Phys. Rev. A 87 022313 [42] Zhang S L and van Loock P 2010 Phys. Rev. A 82 062316 [43] X X Xu, L Y Hu and Z Y Liao 2018 J. Opt. Soc. Am. B 35 000174 [44] Hu L Y, Al-amri M, Liao Z Y and Zubariy M S 2019 Phys. Rev. A 100 052322 [45] Liu C J, Yu M, Ye W, Zhang H and Hu L Y 2020 Results Phys. 19 103616 [46] Xu X X 2015 Phys. Rev. A 92 012318 [47] Hu L Y, Liao Z Y and Zubairy M S 2017 Phys. Rev. A 95 012310 [48] Zhou W D, Ye W, Liu C J, Hu L Y and Liu S Q 2018 Laser Phys. Lett. 15 065203 [49] Xu B J, Tang C M and Chen H 2013 Phys. Rev. A 87 062311 [50] Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S and Guo H 2015 Entropy 17 04547 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|