Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060306    DOI: 10.1088/1674-1056/abea8a
GENERAL Prev   Next  

Superfluid states in α-T3 lattice

Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财)
School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
Abstract  The superfluid states of attractive Hubbard model in α-T3 lattice are investigated. It is found that one usual needs three non-zero superfluid order parameters to describe the superfluid states due to three sublattices. When two hopping amplitudes are equal, the system has particle-hole symmetry. The flat band plays an important role in superfluid pairing near half filling. For example, when the filling factor falls into the flat band, the large density of states in the flat band favors superfluid pairing and the superfluid order parameters reach relatively large values. When the filling factor is in the gap between the flat band and upper band, the superfluid order parameters take small values due to the vanishing of density of states. The superfluid order parameters show nonmonotonic behaviors with the increase of filling factor. At last, we also investigate the edge states with open boundary conditions. It is shown that there exist some interesting edge states in the middle of quasi-particle bands.
Keywords:  superfluid states      flat band      α-T3 lattice      particle-hole symmetry  
Received:  04 December 2020      Revised:  05 February 2021      Accepted manuscript online:  01 March 2021
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.85.Lm (Degenerate Fermi gases)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  74.20.-z (Theories and models of superconducting state)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874127) and the startup grant from Guangzhou University.
Corresponding Authors:  Yi-Cai Zhang     E-mail:  zhangyicai123456@163.com

Cite this article: 

Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财) Superfluid states in α-T3 lattice 2021 Chin. Phys. B 30 060306

[1] Wallace P R 1947 Phys. Rev 71 622
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[4] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[5] Burkov A A, Hook M D and Leon Balents 2011 Phys. Rev. B 84 235126
[6] Malcolm J D and Nicol E J 2016 Phys. Rev. B 93 165433
[7] Schoop L M 2016 Nat. Commun. 7 11696
[8] Xu H Y and Lai Y C 2016 Phys. Rev. B 94 165405
[9] Sutherland B 1986 Phys. Rev. B 34 5208
[10] Julien Vidal, Rémy Mosseri and Benoit Douçot 1998 Phys. Rev. Lett 81 5888
[11] Oriekhov D O, Gorbar E V and Gusynin V P 2018 Low Temperature Physics 44 1313
[12] Gorbar E V, Gusynin V P and Oriekhov D O 2019 Phys. Rev. B 99 155124
[13] Wang F and Ran Y 2011 Phys. Rev. B 84 241103
[14] Okamoto S and Xiao D 2018 J. Phys. Soc. Jpn. 87 041006
[15] Bloch I, Dalibard J and Sylvain 2012 Nat. Phys. 8 267
[16] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Phys. Rev. A 80 063603
[17] Möller G and Cooper N R 2012 Phys. Rev. Lett. 108 045306
[18] Bryenton K R 2018 Optical Properties of the α-T3 Semi-Dirac Model Ph.D. dissertation (Guelph: University of Guelph)
[19] Chen L, Zuber J, Ma Z S and Zhang C 2019 Phys. Rev. B 100 035440
[20] Iurov A, Zhemchuzhna L, Dahal D, Gumbs G and Huang D H 2020 Phys. Rev. B 101 035129
[21] Raoux A, Morigi M, Fuchs J N, Piéchon F and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[22] Alam M W, Souayeh B and Islam S F 2019 J. Phys.: Condens. Matter 31 485303
[23] Wang C Z, Han C D, Xu H Y and Lai Y C 2019 Phys. Rev. B 99 144302
[24] Kovács Á D, Dávid G, Dóra B and Cserti J 2017 Phys. Rev. B 95 035414
[25] Illes E and Nicol E J 2016 Phys. Rev. B 94 125435
[26] Chen Y R, Xu Y, Wang J, Liu J F and Ma Z S 2019 Phys. Rev. B 99 045420
[27] Illes E 2017 Properties of the α-T3 Model Ph.D. dissertation (Guelph: University of Guelph)
[28] Balázs Dóra, Kailasvuori J and Moessner R 2011 Phys. Rev. B 84 195422
[29] Illes E and Nico E J 2017 Phys. Rev. B 95 235432
[30] Urban D F, Bercioux D, Wimmer M and Häusler W H 2011 Phys. Rev. B 84 115136
[31] Biswas T and Ghosh T K 2018 J. Phys.: Condens. Matter 30 075301
[32] Raoux A, Morigi M, Fuchs J N, Piéchon P and Montambaux G 2014 Phys. Rev. Lett. 112 026402
[33] Roslyak O, Gumbs G, Balassis A and Elsayed H 2020 arXiv: 2006 15447
[34] Biswas T and Ghosh T K 2016 J. Phys.: Condens. Matter 28 495302
[35] Islam S F and Dutta P 2017 Phys. Rev. B 96 045418
[36] Biswas T and Ghosh T K 2018 J. Phys.: Condens. Matter 30 075301
[37] Abranyos Y, Berman O L and Gumbs G 2020 Phys. Rev. B 102 155408
[38] Rizzi M, Cataudella V and Fazio R 2006 Phys. Rev. B 73 144511
[39] Tran M T and Kuroki K 2009 Phys. Rev. B 79 125125
[40] Imada M, Fujimori A and Tokura Y 1998 Phys. Rev. B 70 1039
[41] Liu H D 2019 Chin. Phys. B 28 107102
[42] Zheng W, Shen H, Wang Z and Zhai H 2015 Phys. Rev. B 91 161107
[43] Zhang Y C, Xu Z H and Zhang S Z 2017 Phys. Rev. A 95 043640
[44] Zhang Y C, Wang H T, Shen S Q and Liu W M 2013 Chin. Phys. B 22 090501
[45] Wei X B, Meng Y M, Wu Z M and Gao X L 2015 Chin. Phys. B 24 117101
[46] Xu H Y and Lai Y C 2020 Phys. Rev. Research 2 013062
[47] Gennes P G de 1999 Superconductivity of Metal and Alloys (Westview Press)
[48] Zheng D, Zhang G M and Wu C 2011 Phys. Rev. B 84 205121
[49] Semenoff G W, and Zhou F 2008 Phys. Rev. Lett. 101 087204
[50] He L, Wang J, Peng S G, Liu X J and Hu H 2016 Phys. Rev. Res. 94 043624
[51] Zhang Y C, Ding S and Zhang S 2017 Phys. Rev. A 95 041603
[52] Wu Y R, Zhang X F, Liu C F, Liu W M and Zhang Y C 2021 Superfluid Density and Collective Modes of Fermion Superfluid in Dice Lattice
[53] Peotta S and Törmä P 2015 Nat. Commun. 6 8944
[54] Hazra T, Verma N and Mohit Randeria M 2019 Phys. Rev. X 9 031049
[55] Julku A, Peltonen T J, Liang L, Heikkilä and Törmä P 2020 Phys. Rev. B 101 060505
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[3] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[4] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[5] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[6] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[7] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[8] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[9] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[10] Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌). Chin. Phys. B, 2017, 26(4): 044208.
No Suggested Reading articles found!