Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 115202    DOI: 10.1088/1674-1056/23/11/115202

Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias

Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China

The inflexion point of electron density and effective electron temperature curves versus radio-frequency (RF) bias voltage is observed in the H mode of inductively coupled plasmas (ICPs). The electron energy probability function (EEPF) evolves first from a Maxwellian to a Druyvesteyn-like distribution, and then to a Maxwellian distribution again as the RF bias voltage increases. This can be explained by the interaction of two distinct bias-induced mechanisms, that is: bias-induced electron heating and bias-induced ion acceleration loss and the decrease of the effective discharge volume due to the sheath expansion. Furthermore, the trend of electron density is verified by a fluid model combined with a sheath module.

Keywords:  inductively coupled plasmas      radio-frequency bias      Langmuir probe      fluid model  
Received:  08 May 2014      Revised:  30 May 2014      Accepted manuscript online: 
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.80.Pi (High-frequency and RF discharges)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11075029, 11175034, and 11205025) and the Fundamental Research Funds for Central Universities, China (Grant No. DUT12RC(3)14).

Corresponding Authors:  Wang You-Nian     E-mail:

Cite this article: 

Gao Fei (高飞), Zhang Yu-Ru (张钰如), Zhao Shu-Xia (赵书霞), Li Xue-Chun (李雪春), Wang You-Nian (王友年) Electronic dynamic behavior in inductively coupled plasmas with radio-frequency bias 2014 Chin. Phys. B 23 115202

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd edn.) (New York: Wiley-Interscience)
[2] Hopwood J 1993 Appl. Phys. Lett. 62 940
[3] Seo S H, Hong J I, Bai K H and Chang H Y 1999 Phys. Plasmas 6 614
[4] Cunge G, Crowley B, Vender D and Turner M M 1999 Plasma Sources Sci. Technol. 8 576
[5] Turner M M and Lieberman M A 1999 Plasma Sources Sci. Technol. 8 313
[6] Lee M H, Lee K H, Hyun D S and Chung C W 2007 Appl. Phys. Lett. 90 191502
[7] Coburn J W and Winters H F 1979 J. Appl. Phys. 50 3189
[8] Keller J H, Forster J C and Barnes M S 1993 J. Vac. Sci. Technol. A 11 2487
[9] Hebner G A, Blain M G, Hamilton T W, Nichols C A and Jarecki R L 1999 J. Vac. Sci. Technol. A 17 3172
[10] Hebner G A and Miller P A 2000 J. Appl. Phys. 87 7660
[11] Choe J Y, Fuller N C M, Donnelly V M and Herman I P 2000 J. Vac. Sci. Technol. A 18 2669
[12] Hebner G A and Abraham I C 2002 J. Appl. Phys. 91 9539
[13] Wuu D S, Chung C R, Liu Y H, Horng R H and Huang S H 2002 J. Vac. Sci. Technol. B 20 902
[14] Plank N O V, Blauw M A, van der Drift E W J M and Cheung R 2003 J. Phys. D: Appl. Phys. 36 482
[15] Imai S I 2008 J. Vac. Sci. Technol. B 26 2008
[16] Sobolewski M A and Kim J H 2007 J. Appl. Phys. 102 113302
[17] Lee H C, Lee M H and Chung C W 2010 Appl. Phys. Lett. 96 071501
[18] Kwon D C, Chang W S, Park M, You D H, Song M Y, You S J, Im Y H and Yoon J S 2011 J. Appl. Phys. 109 073311
[19] Lee H C and Chung C W 2012 Appl. Phys. Lett. 101 244104
[20] Lee H C, Oh S and Chung C W 2012 Plasma Sources Sci. Technol. 21 035003
[21] Gao F, Zhao S X, Li X S and Wang Y N 2010 Phys. Plasmas 17 103507
[22] Gao F, Zhao S X, Li X S and Wang Y N 2009 Phys. Plasmas 16 113502
[23] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[24] Gao F, Liu W, Zhao S X, Zhang Y R, Sun C S and Wang Y N 2013 Chin. Phys. B 22 115205
[25] Druvesteyn M J 1930 Z. Phys. 64 781
[26] Zhao S X, Xu X, Li X C and Wang Y N 2009 J. Appl. Phys. 105 083306
[27] Dai Z L, Wang Y N and Ma T C 2002 Phys. Rev. E 65 036403
[28] Canal G P, Luna H and Galvao R M O 2010 J. Phys. D: Appl. Phys. 43 025209
[29] Godyak V A and Piejak R B 1990 Phys. Rev. Lett. 65 996
[30] Seo D H, Chung C W and Chang H Y 2000 Surf. Coat. Technol. 131 1
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
[3] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[4] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[5] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[6] Phase shift effects of radio-frequency bias on ion energy distribution in continuous wave and pulse modulated inductively coupled plasmas
Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), Jia Liu(刘佳), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(4): 045202.
[7] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[8] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[9] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[10] Effect of air breakdown on microwave pulse energy transmission
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新), Panpan Shu(舒盼盼). Chin. Phys. B, 2017, 26(2): 029201.
[11] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[12] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[13] Two-dimensional numerical study of an atmospheric pressurehelium plasma jet with dual-power electrode
Yan Wen (晏雯), Liu Fu-Cheng (刘福成), Sang Chao-Feng (桑超峰), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(6): 065203.
[14] Short-pulse high-power microwave breakdown at high pressures
Zhao Peng-Cheng (赵朋程), Liao Cheng (廖成), Feng Ju (冯菊). Chin. Phys. B, 2015, 24(2): 025101.
[15] A computational modeling study on the helium atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Liu San-Qiu (刘三秋), Wang Zhen-Dong (王震东), Lv Yan (吕燕), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125202.
No Suggested Reading articles found!