Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 115205    DOI: 10.1088/1674-1056/22/11/115205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Changes of the electron dynamics in hydrogen inductively coupled plasma

Gao Fei (高飞), Liu Wei (刘巍), Zhao Shu-Xia (赵书霞), Zhang Yu-Ru (张钰如), Sun Chang-Sen (孙长森), Wang You-Nian (王友年)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Changes of the electron dynamics in hydrogen (H2) radio-frequency (RF) inductively coupled plasmas are investigated using a hairpin probe and an intensified charged coupled device (ICCD). The electron density, plasma emission intensity, and input current (voltage) are measured during the E to H mode transitions at different pressures. It is found that the electron density, plasma emission intensity, and input current jump up discontinuously, and the input voltage jumps down at the E to H mode transition points. And the threshold power of the E to H mode transition decreases with the increase of the pressure. Moreover, space and phase resolved optical emission spectroscopic measurements reveal that, in the E mode, the RF dynamics is characterized by one dominant excitation per RF cycle, while in the H mode, there are two excitation maxima within one cycle.
Keywords:  mode transition      inductively coupled plasma      hairpin probe      hydrogen  
Received:  12 March 2013      Revised:  09 May 2013      Accepted manuscript online: 
PACS:  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.80.Pi (High-frequency and RF discharges)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075029, 11175034, and 11205025) and the Fundamental Research Funds for Central Universities, China (Grant No. DUT12RC(3)14).
Corresponding Authors:  Wang You-Nian     E-mail:  ynwang@dlut.edu.cn

Cite this article: 

Gao Fei (高飞), Liu Wei (刘巍), Zhao Shu-Xia (赵书霞), Zhang Yu-Ru (张钰如), Sun Chang-Sen (孙长森), Wang You-Nian (王友年) Changes of the electron dynamics in hydrogen inductively coupled plasma 2013 Chin. Phys. B 22 115205

[1] Rousseau A, Granier A, Gousset G and Leprince P 1994 J. Phys. D: Appl. Phys. 27 1412
[2] Bachmann P K, Leers D and Lyatin H 1994 Diamond Relat. Mater. 1 1
[3] Gottscho R A, Preppernau B L, Pearton S J, EmersonA B and Giappis K P 1990 J. Appl. Phys. 68 440
[4] Gicquel A, Anger E, Ravet M F, Fabre D, Scatena D and Wang Z Z 1993 Diamond Relat. Mater. 2 417
[5] Findeling-Dufour C, Gicquel A and Chiron R 1998 Diamond Relat. Mater. 7 986
[6] Hou G F, Geng X H, Zhang X D, Sun J, Zhang J H and Zhao Y 2011 Chin. Phys. B 20 077802
[7] Yan W S, Wei D Y, Xu S, Sern C C and Zhou H P 2011 J. Phys. D: Appl. Phys. 44 345401
[8] Zhang H L, Liu F Z, Zhu M F and Liu J L 2012 Chin. Phys. B 21 015203
[9] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (2nd edn) (New York: Wiley-Interscience)
[10] Hopwood J 1993 Appl. Phys. Lett. 62 940
[11] Lee M H, Lee K H, Hyun D S and Chung C W 2007 Appl. Phys. Lett. 90 191502
[12] Singh S V 2008 J. Appl. Phys. 103 083303
[13] Lee M H and Chung C W 2010 Plasma Sources Sci. Technol. 19 015011
[14] Gao F, Li X C, Zhao S X and Wang Y N 2012 Chin. Phys. B 21 075203
[15] Seo S H, Hong J I, Bai K H and Chang H Y 1999 Phys. Plasmas 6 614
[16] Turner M M and Lieberman M A 1999 Plasma Sources Sci. Technol. 8 313
[17] Seo S H, Hong J I and Chang H Y 1999 Appl. Phys. Lett. 74 2776
[18] Cunge G, Crowley B, Vender D and Turner M M 1999 Plasma Sources Sci. Technol. 8 576
[19] Ostrikov K N, Xu S and Yu M Y 2000 J. Appl. Phys. 88 2269
[20] Xu S, Ostrikov K N, Low W and Lee S 2000 J. Vac. Sci. Technol. A 18 2185
[21] Xu S, Ostrikov K N, Li Y, Taskadze E L and Jones I R 2001 Phys. Plasmas 8 2549
[22] Chung C W and Chang H Y 2002 Appl. Phys. Lett. 80 1725
[23] Ostrikov K N, Xu S and Shafiul Azam A B M 2002 J. Vac. Sci. Technol. A 20 251
[24] Czerwiec T and Graves D B 2004 J. Phys. D: Appl. Phys. 37 2827
[25] Kang D H, Lee D K, Kim K B and Lee J J 2004 Appl. Phys. Lett. 84 3283
[26] Tsakadze Z L, Ostrikov K, Tsakadze E L and Xu S 2005 J. Vac. Sci. Technol. A 23 440
[27] Singh S V, Kempkes P and Soltwisch H 2006 Appl. Phys. Lett. 89 161501
[28] Tsai C M, Lee A P and Kou C S 2006 J. Phys. D: Appl. Phys. 39 3821
[29] Daltrini A M, Moshkalev S A, Monteiro M J R, Besseler E, Kostryukov A and Machida M 2007 J. Appl. Phys. 101 073309
[30] Iordanova S and Koleva I 2007 J. Phys.: Conf. Ser. 63 012026
[31] Singh S V and Pargmann C 2008 J. Appl. Phys. 104 083303
[32] Hirao S, Hayashi Y and Makabe T 2008 IEEE Trans. Plasma Sci. 36 1410
[33] Daltrini A M, Moshkalev S A, Morgan T J, Piejak R B and Graham W G 2008 Appl. Phys. Lett. 92 061504
[34] Zhao S X, Xu X, Li X C and Wang Y N 2009 J. Appl. Phys. 105 083306
[35] Zhao S X, Gao F and Wang Y N 2009 J. Phys. D: Appl. Phys. 42 225203
[36] Morishita S, Hayashi Y and Makabe T 2010 Plasma Sources Sci. Technol. 19 055007
[37] Zhao S X and Wang Y N 2010 J. Phys. D: Appl. Phys. 43 275203
[38] Lee Y W, Lee H L and Chung T H 2011 J. Appl. Phys. 109 113302
[39] Miyoshi Y, Petrovic Z L and Makabe T 2002 J. Phys. D: Appl. Phys. 35 454
[40] O’Connell D, Niemi K, Zaka-ul-Islam M and Gans T 2009 J. Phys.: Conf. Ser. 162 012011
[41] Zaka-ul-Islam M, Niemi K, Gans T and O’Connell D 2011 Appl. Phys. Lett. 99 041501
[42] Lee H C, Lee J K and Chung C W 2010 Phys. Plasmas 17 033506
[43] Abdel-Rahman M, Gans T, Schulz-con der Gathen V and Dobele H F 2005 Plasma Sources Sci. Technol. 14 51
[44] Abdel-Rahman M, Schulz-con der Gathen V and Gans T 2007 J. Phys. D: Appl. Phys. 40 1678
[45] Gao F, Zhao S X, Li X S and Wang Y N 2009 Phys. Plasmas 16 113502
[46] Gao F, Zhao S X, Li X S and Wang Y N 2010 Phys. Plasmas 17 103507
[47] Piejak R B, Godyak V A, Garner R, Alexandrovich B M and Sternberg N 2004 J. Appl. Phys. 95 3785
[48] Piejak R B, Al-Kuzee J and Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734
[49] Schulze J. Donko Z, Heil B G, Luggenholscher D, Brinkmann R P and Czarnetzki U 2008 J. Phys. D: Appl. Phys. 41 105214
[50] Gans T, O’Connell D, Schulz-von der Gathen V and Waskoenig J 2010 Plasma Sources Sci. Technol. 19 034010
[1] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[2] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[7] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[8] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[9] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[10] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[11] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[12] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[13] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[14] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[15] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
No Suggested Reading articles found!