Abstract We study the stabilization properties of dipolar Bose-Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross-Pitaevskii equation with both the short-range contact interaction and the long-range dipole-dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate.
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎) Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice 2021 Chin. Phys. B 30 060307
[1] Morsch O and Oberthaler M 2006 Rev. Mod. Phys.78 179 [2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [3] Klawunn M and Santos L 2009 Phys. Rev. A80 013611 [4] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett.108 210401 [5] Doyle J, Friedrich B, Krems R V and Masnou-Seeuws F 2004 Eur. Phys. J. D31 149 [6] Ospelkaus S, Peér A, Ni K K, Zirbel J J, Neyenhuis B, Kotochigova S, Julienne P S, Ye J and Jin D S 2008 Nat. Phys.4 622 [7] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett.94 160401 [8] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys.72 126401 [9] Baranov M A 2008 Phys. Rep.464 71 [10] Tieleman O, Lazarides A and Morais Smith C 2011 Phys. Rev. A83 013627 [11] Dutta O and Meystre P 2007 Phys. Rev. A75 053604 [12] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett.98 030406 [13] Eckardt A 2017 Rev. Mod. Phys.89 011004 [14] Arnal M, Chatelain G, Cabrera-Gutiérrez C, Fortun A, Michon E, Billy J, Schlagheck P and Guéry-Odelin D 2020 Phys. Rev. A101 013619 [15] Eckardt A, Weiss C and Holthaus M 2005 Phys. Rev. Lett.95 260404 [16] Xie Z W and Liu W M 2004 Phys. Rev. A70 045602 [17] Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R and Esslinger T 2018 Nature553 481 [18] Clark L W, Feng L and Chin C 2016 Science354 606 [19] Feng L, Clark L W, Gaj A and Chin C 2018 Nat. Phys.14 269 [20] Fattori M, Roati G, Deissler B, D'Errico C, Zaccanti M, Jona-Lasinio M, Santos L, Inguscio M and Modugno G 2008 Phys. Rev. Lett.101 190405 [21] Zenesini A, Lignier H, Ciampini D, Morsch O and Arimondo E 2009 Phys. Rev. Lett.102 100403 [22] Ramos E R F, Henn E A L, Seman J A, Caracanhas M A, Magalhães K M F, Helmerson K, Yukalov V I and Bagnato V S 2008 Phys. Rev. A78 063412 [23] Pollack S E, Dries D and Hulet R G 2010 Phys. Rev. A81 053627 [24] Sabari S and Bishwajyoti D 2018 Phys. Rev. E98 042203 [25] Sabari S, Jisha C P, Porsezian K and Brazhnyi V A 2015 Phys. Rev. E92 032905 [26] Mann N, Bakhtiari M R, Massel F, Pelster A and Thorwart M 2017 Phys. Rev. A95 043604 [27] Xue J K and Zhang A X 2008 Phys. Rev. Lett.101 180401 [28] Xue J K, Zhang A X and Liu J 2008 Phys. Rev. A77 013602 [29] Jian Y, Zhang A X, He C X, Qi X Y and Xue J K 2013 Phys. Rev. E87 053201 [30] Zhang A X, Cai L X, Yu Z F, Chang N N, He S Q and Xue J K 2019 Phys. Lett. A383 196 [31] Menotti C, Trefzger C and Lewenstein M 2007 Phys. Rev. Lett.98 235301 [32] Yi S, Li T and Sun C P 2007 Phys. Rev. Lett.98 260405 [33] Danshita I and Sáde Melo C A R 2009 Phys. Rev. Lett.103 225301 [34] Lahaye T, Pfau T and Santos L 2010 Phys. Rev. Lett.104 170404
Effective sideband cooling in an ytterbium optical lattice clock Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4]
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.