Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060307    DOI: 10.1088/1674-1056/abd746
GENERAL Prev   Next  

Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice

Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎)
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  We study the stabilization properties of dipolar Bose-Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross-Pitaevskii equation with both the short-range contact interaction and the long-range dipole-dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate.
Keywords:  Bose-Einstein condensate      optical lattice      dipole-dipole interaction      periodic modulation  
Received:  22 September 2020      Revised:  29 November 2020      Accepted manuscript online:  30 December 2020
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.Yv (Solitons)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).
Corresponding Authors:  Ju-Kui Xue     E-mail:  xuejk@nwnu.edu.cn

Cite this article: 

Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎) Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice 2021 Chin. Phys. B 30 060307

[1] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Klawunn M and Santos L 2009 Phys. Rev. A 80 013611
[4] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401
[5] Doyle J, Friedrich B, Krems R V and Masnou-Seeuws F 2004 Eur. Phys. J. D 31 149
[6] Ospelkaus S, Peér A, Ni K K, Zirbel J J, Neyenhuis B, Kotochigova S, Julienne P S, Ye J and Jin D S 2008 Nat. Phys. 4 622
[7] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[8] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[9] Baranov M A 2008 Phys. Rep. 464 71
[10] Tieleman O, Lazarides A and Morais Smith C 2011 Phys. Rev. A 83 013627
[11] Dutta O and Meystre P 2007 Phys. Rev. A 75 053604
[12] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett. 98 030406
[13] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[14] Arnal M, Chatelain G, Cabrera-Gutiérrez C, Fortun A, Michon E, Billy J, Schlagheck P and Guéry-Odelin D 2020 Phys. Rev. A 101 013619
[15] Eckardt A, Weiss C and Holthaus M 2005 Phys. Rev. Lett. 95 260404
[16] Xie Z W and Liu W M 2004 Phys. Rev. A 70 045602
[17] Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R and Esslinger T 2018 Nature 553 481
[18] Clark L W, Feng L and Chin C 2016 Science 354 606
[19] Feng L, Clark L W, Gaj A and Chin C 2018 Nat. Phys. 14 269
[20] Fattori M, Roati G, Deissler B, D'Errico C, Zaccanti M, Jona-Lasinio M, Santos L, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 101 190405
[21] Zenesini A, Lignier H, Ciampini D, Morsch O and Arimondo E 2009 Phys. Rev. Lett. 102 100403
[22] Ramos E R F, Henn E A L, Seman J A, Caracanhas M A, Magalhães K M F, Helmerson K, Yukalov V I and Bagnato V S 2008 Phys. Rev. A 78 063412
[23] Pollack S E, Dries D and Hulet R G 2010 Phys. Rev. A 81 053627
[24] Sabari S and Bishwajyoti D 2018 Phys. Rev. E 98 042203
[25] Sabari S, Jisha C P, Porsezian K and Brazhnyi V A 2015 Phys. Rev. E 92 032905
[26] Mann N, Bakhtiari M R, Massel F, Pelster A and Thorwart M 2017 Phys. Rev. A 95 043604
[27] Xue J K and Zhang A X 2008 Phys. Rev. Lett. 101 180401
[28] Xue J K, Zhang A X and Liu J 2008 Phys. Rev. A 77 013602
[29] Jian Y, Zhang A X, He C X, Qi X Y and Xue J K 2013 Phys. Rev. E 87 053201
[30] Zhang A X, Cai L X, Yu Z F, Chang N N, He S Q and Xue J K 2019 Phys. Lett. A 383 196
[31] Menotti C, Trefzger C and Lewenstein M 2007 Phys. Rev. Lett. 98 235301
[32] Yi S, Li T and Sun C P 2007 Phys. Rev. Lett. 98 260405
[33] Danshita I and Sáde Melo C A R 2009 Phys. Rev. Lett. 103 225301
[34] Lahaye T, Pfau T and Santos L 2010 Phys. Rev. Lett. 104 170404
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[6] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[9] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[10] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[13] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!