Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058502    DOI: 10.1088/1674-1056/abd740
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved 4H-SiC UMOSFET with super-junction shield region

Pei Shen(沈培)1, Ying Wang(王颖)1,†, Xing-Ji Li(李兴冀)2, Jian-Qun Yang(杨剑群)2, Cheng-Hao Yu(于成浩)1, and Fei Cao(曹菲)1
1 Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China;
2 National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin Institute of Technology, Harbin 150080, China
Abstract  This article investigates an improved 4H-SiC trench gate metal-oxide-semiconductor field-effect transistor (MOSFET) (UMOSFET) fitted with a super-junction (SJ) shielded region. The modified structure is composed of two n-type conductive pillars, three p-type conductive pillars, an oxide trench under the gate, and a light n-type current spreading layer (NCSL) under the p-body. The n-type conductive pillars and the light n-type current spreading layer provide two paths to and promote the diffusion of a transverse current in the epitaxial layer, thus improving the specific on-resistance ($R_{\rm on,sp}$). There are three p-type pillars in the modified structure, with the p-type pillars on both sides playing the same role. The p-type conductive pillars relieve the electric field ($E$-field) in the corner of the trench bottom. Two-dimensional simulation (silvaco TCAD) indicates that $R_{\rm on,sp }$ of the modified structure, and breakdown voltage ($V_{\rm BR}$) are improved by 22.2% and 21.1% respectively, while the maximum figure of merit (${\rm FOM}=V^{2}_{\rm BR}/R_{\rm on,sp}$) is improved by 79.0%. Furthermore, the improved structure achieves a light smaller low gate-to-drain charge ($Q_{\rm gd}$) and when compared with the conventional UMOSFET (conventional-UMOS), it displays great advantages for reducing the switching energy loss. These advantages are due to the fact that the p-type conductive pillars and n-type conductive pillars configured under the gate provide a substantial charge balance, which also enables the charge carriers to be extracted quickly. In the end, under the condition of the same total charge quantity, the simulation comparison of gate charge and OFF-state characteristics between Gauss-doped structure and uniform-doped structure shows that Gauss-doped structure increases the $V_{\rm BR}$ of the device without degradation of dynamic performance.
Keywords:  breakdown voltage      specific on-resistance      silicon carbide      switching energy loss      super-junction (SJ)      trench gate MOSFET  
Received:  13 September 2020      Revised:  16 November 2020      Accepted manuscript online:  30 December 2020
PACS:  85.30.-z (Semiconductor devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the Youth Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ191154), and the Youth Foundation of Ping Xiang University, China (Grant No. 2018D0230).
Corresponding Authors:  Ying Wang     E-mail:  wangying7711@yahoo.com

Cite this article: 

Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲) Improved 4H-SiC UMOSFET with super-junction shield region 2021 Chin. Phys. B 30 058502

[1] Matsuura H, Nagasawa H, Yagi K and Kawahara T 2004 J. Appl. Phys. 96 7346
[2] Yu L C and Sheng K 2006 Solid-State Electron. 66 1062
[3] Jiang H, Wei J, Dai X, Ke M, Deviny I and Mawby P 2016 IEEE Electron Dev. Lett. 37 1324
[4] Zhou X, Yue R, Zhang J, Dai G, Li J and Wang Y 2017 IEEE Trans. Electron Dev. 64 4568
[5] Tian K, Hallen A, Qi J, Ma S, Fei X, Zhang A and Liu W 2019 IEEE Transa. Electron Dev. 66 1
[6] Kagawa Y, et al. 2014 Mater. Sci. Forum 778-780 919
[7] Tan J, Cooper J A and Melloch M R 1998 IEEE Electron Dev. Lett. 19 487
[8] Li Y, Cooper J A and Capano M A 2002 IEEE Trans. Electron Dev. 49 972
[9] Cooper J A (U.S. Patent) 6 180 958 [2001-01-30]
[10] Kang H and Udrea F 2019 IEEE Trans. Electron Dev. 66 5254
[11] Iwamuro N 2019 International Conference on Electronics Packaging, April 17-20, 2019, Niigata, Japan, p. 260
[12] Vudumula P, Kotamraju S 2019 IEEE Trans. Electron Dev. 66 1402
[13] Orouji A A, Jozi M and Fathipour M 2015 Mater. Sci. Semicond. Process. 39 711
[14] Deng S, Hossain Z and Taniguchi T 2017 IEEE Trans. Electron Dev. 64 735
[15] He Q Y, Luo X R, Liao T, Wei J, Deng G Q, Fang J and Yang F 2018 Superlattices and Microstructures 125 58
[16] Kobayashi Y, Kyogoku S, Morimoto T, Kumazawa T, Yamashiro Y, Takei M and Harada S 2019 Proceedings of the 31st International Symposium on Power Semiconductor Devices & ICs, May 19-23, 2019, Shanghai, China, p. 19
[17] Kosugi R, Ji S, Mochizuki K, Adachi K, Segawa S, Kawada Y, Yonezawa Y and Okumura H 2019 Proceedings of the 31st International Symposium on Power Semiconductor Devices & ICs, May 19-23, 2019, Shanghai, China, p. 19
[18] Harada S, Kobayashi Y, Kyogoku S, Morimoto T, Tanaka T, Takei M and Okumura H 2018 IEEE International Electron Devices Meeting, Novermber 29-December 07, 2018, San Francisco, USA, p. 1
[19] Goh J and Kim K 2020 International Conference on Electronics, Information, and Communication, July 17-19, 2020, Beijing, China, p. 19
[20] Vudumula P, Kiranmayee S and Kotamraju S 2019 Semicond. Sci. Technol. 34 1
[21] Kosugi R, SY J, Mochizuki K, Kouketsu H, Kawada Y, Fujisawa H, Kojima K, Yonezawa Y and Okumura H 2017 Jpn. J. Appl. Phys. 56 04CR05
[22] Dai T, et al. 2017 Mater. Sci. Forum 897 371
[23] Li J J, Cheng X H, Wang Q, Zheng L, Shen L Y, Li X C, Zhang D L, Zhu H Y and Shen D S 2017 Mater. Sci. Semicond. Process. 67 104
[24] Elham A, Orouji A A 2018 J. Comput. Electron. 17 1584
[25] Matsunaga S, Sawada M, Sugi A, Takagiwa K and Fujishima N 2006 International Symposium on Power Semiconductor Devices and IC's, June 04-08, 2006, Naples, Italy, p. 1
[26] Hueting R J E, Hijzen E A, Heringa A, Ludikhuize A W and Z and M A A 2004 IEEE Trans. Electron Dev. 51 1323
[27] Zhang M, Wei J, Jiang H, Chen K J and Cheng C H 2017 IEEE Trans. Dev. Mater. Reliab. 17 432
[28] Wei J, Zhang M, Jiang H, Wang H and Chen K J 2017 IEEE Trans. Electron Dev. 64 2592
[29] Udrea F, Deboy G and Fujihira T 2017 IEEE Trans. Electron Dev. 64 713
[30] Castro I, Roig J, Gelagaev R, Vlachakis B, Bauwens F, Lamar D. G and Driesen J 2016 IEEE Trans. Power Electron. 31 2485
[31] Zhou X, Yue R, Zhang J, Dai G, Li J and Wang Y 2017 IEEE Trans. Electron Dev. 64 4568
[32] Wang Y, Jiao W L, Hu H F, Liu Y T and Gao J 2013 IEEE Trans. Electron Dev. 60 2084
[33] Wang H, Napoli E and Udrea F 2009 IEEE Trans. Electron Dev. 56 3175
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[9] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[13] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[14] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!