|
|
Search for topological defect of axionlike model with cesium atomic comagnetometer |
Yucheng Yang(杨雨成)1, Teng Wu(吴腾)1,†, Jianwei Zhang(张建玮)2, and Hong Guo(郭弘)1,‡ |
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China; 2 School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Many terrestrial experiments have been designed to detect domain walls composed of axions or axionlike particles (ALPs), which are promising candidates of dark matter. When the domain wall crosses over the Earth, the pseudoscalar field of ALPs could couple to the atomic spins. Such exotic spin-dependent couplings can be searched for by monitoring the transient-in-time change of the atomic spin precession frequency in the presence of a magnetic field. We propose here a single-species cesium atomic comagnetometer, which measures the spin precession frequencies of atoms in different ground-state hyperfine levels, to eliminate the common-mode magnetic-field variations and search for the exotic non-magnetic couplings solely between protons and ALPs. With the single-species atomic comagnetometer, we experimentally rule out the possibility that the decay constant of the linear pseudoscalar couplings of ALPs to protons is $f_{\rm p}\lesssim 3.71\times 10^{7}~\rm{GeV}$. The advanced system has the potential to constrain the constant to be $f_{\rm p}\lesssim 10.7\times 10^{9}~\rm{GeV}$, promising to improve astrophysical constraint level by at least one order of magnitude. Our system could provide a sensitive detection method for the global network of optical magnetometers to search for exotic physics.
|
Received: 04 February 2021
Revised: 15 March 2021
Accepted manuscript online: 24 March 2021
|
PACS:
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
07.55.Jg
|
(Magnetometers for susceptibility, magnetic moment, and magnetization measurements)
|
|
11.27.+d
|
(Extended classical solutions; cosmic strings, domain walls, texture)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071012), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), and National Hi-Tech Research and Development Program of China. |
Corresponding Authors:
Teng Wu, Hong Guo
E-mail: wuteng@pku.edu.cn;hongguo@pku.edu.cn
|
Cite this article:
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘) Search for topological defect of axionlike model with cesium atomic comagnetometer 2021 Chin. Phys. B 30 050704
|
[1] Pospelov M, Pustelny S, Ledbetter M P, Kimball D F J, Gawlik W and Budker D 2013 Phys. Rev. Lett. 110 021803 [2] Yang W, Leng J, Zhang S and Zhao J 2019 Sci. Rep. 6 29519 [3] McNally R L and Zelevinsky T 2020 Eur. Phys. J. D 4 100632 [4] Sikivie P 1982 Phys. Rev. Lett. 48 1156 [5] Raffelt G G 1999 Ann. Rev. Nucl. Part. Sci. 49 163 [6] Olive K A and Pospelov M 2008 Phys. Rev. D 77, 43524 [7] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 [8] Wcislo P, Morzyński P, Bober M, Cygan A, Lisak D, Ciurylo R and Zawada M 2016 Nat. Astron. 1 9 [9] Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 114 161301 [10] Stadnik Y V and Flambaum V V2014 Phys. Rev. Lett. 113 151301 [11] Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J R, Read J, Gawlik W and Budker D 2013 Ann. Phys. 525 659 [12] Afach S, Budker D, DeCamp G, Dumont V, Grujić Z D, Guo H, Kimball D F J, Kornack T W, Lebedev V, Li W, Masia-Roig H, Nix S, Padniuk M, Palm C A, Pankow C, Penaflor A, Peng X, Pustelny S, Scholtes T, Smiga J A, Stalnaker J E, Weis A, Wickenbrock A and Wurm D 2018 Phys. Dark Univ. 22 162 [13] Masia-Roig H, Smiga J A, Budker D, Dumont V, Grujić Z D, Kim D, Kimball D F J, Lebedev V, Monroy M, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Shin Y C, Stalnaker J E, Sulai I, Weis A and Wickenbrock A 2020 Phys. Dark Univ. 28 100494 [14] Kimball D F J, Dudley J, Li Y, Thulasi S, Pustelny S, Budker D and Zolotorev M 2016 Phys. Rev. D 94 82005 [15] Yang Y, Wu T, Chen J, Peng X and Guo H 2021 Appl. Phys. B 127 40 [16] Kimball D F J 2015 New J. Phys. 17 073008 [17] Schmidt T 1937 Z. Phys. 106 358 [18] Klinkenberg P F A 1952 Rev. Mod. Phys. 24 63 [19] Blatt J M and Weisskopf V F 1979 Theoretical Nuclear Physics (New York: Springer-Verlag) p. 12 [20] Mayer M G 1950 Phys. Rev. 78 16 [21] Wu T, Blanchard J W, Centers G P, Fiigueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O, Wickenbrock A and Budker D 2019 Phys. Rev. Lett. 122 191302 [22] Wang Z, Peng X, Zhang R, Luo H, Li J, Xiong Z, Wang S and Guo H 2020 Phys. Rev. Lett. 124 193002 [23] Kimball D F J, Budker D, Eby J, Pospelov M, Pustelny S, Scholtes T, Stadnik Y V, Weis A and Wickenbrock A 2018 Phys. Rev. D 97 43002 [24] Zhang R, Xiao W, Ding Y, Feng Y, Peng X, Shen L, Sun C, Wu T, Wu Y, Yang Y, Zheng Z, Zhang X, Chen J and Guo H 2020 Sci. Adv. 6 24 [25] Kimball D F J, Dudley J, Li Y, Patel D and Valdez J 2017 Phys. Rev. D 96 75004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|