Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050704    DOI: 10.1088/1674-1056/abf132
RAPID COMMUNICATION Prev   Next  

Search for topological defect of axionlike model with cesium atomic comagnetometer

Yucheng Yang(杨雨成)1, Teng Wu(吴腾)1,†, Jianwei Zhang(张建玮)2, and Hong Guo(郭弘)1,‡
1 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China;
2 School of Physics, Peking University, Beijing 100871, China
Abstract  Many terrestrial experiments have been designed to detect domain walls composed of axions or axionlike particles (ALPs), which are promising candidates of dark matter. When the domain wall crosses over the Earth, the pseudoscalar field of ALPs could couple to the atomic spins. Such exotic spin-dependent couplings can be searched for by monitoring the transient-in-time change of the atomic spin precession frequency in the presence of a magnetic field. We propose here a single-species cesium atomic comagnetometer, which measures the spin precession frequencies of atoms in different ground-state hyperfine levels, to eliminate the common-mode magnetic-field variations and search for the exotic non-magnetic couplings solely between protons and ALPs. With the single-species atomic comagnetometer, we experimentally rule out the possibility that the decay constant of the linear pseudoscalar couplings of ALPs to protons is $f_{\rm p}\lesssim 3.71\times 10^{7}~\rm{GeV}$. The advanced system has the potential to constrain the constant to be $f_{\rm p}\lesssim 10.7\times 10^{9}~\rm{GeV}$, promising to improve astrophysical constraint level by at least one order of magnitude. Our system could provide a sensitive detection method for the global network of optical magnetometers to search for exotic physics.
Keywords:  atomic comagnetometer      atomic magnetometer      domain wall      axions and axionlike particles  
Received:  04 February 2021      Revised:  15 March 2021      Accepted manuscript online:  24 March 2021
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
  11.27.+d (Extended classical solutions; cosmic strings, domain walls, texture)  
  75.60.Ch (Domain walls and domain structure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071012), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61225003), and National Hi-Tech Research and Development Program of China.
Corresponding Authors:  Teng Wu, Hong Guo     E-mail:  wuteng@pku.edu.cn;hongguo@pku.edu.cn

Cite this article: 

Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘) Search for topological defect of axionlike model with cesium atomic comagnetometer 2021 Chin. Phys. B 30 050704

[1] Pospelov M, Pustelny S, Ledbetter M P, Kimball D F J, Gawlik W and Budker D 2013 Phys. Rev. Lett. 110 021803
[2] Yang W, Leng J, Zhang S and Zhao J 2019 Sci. Rep. 6 29519
[3] McNally R L and Zelevinsky T 2020 Eur. Phys. J. D 4 100632
[4] Sikivie P 1982 Phys. Rev. Lett. 48 1156
[5] Raffelt G G 1999 Ann. Rev. Nucl. Part. Sci. 49 163
[6] Olive K A and Pospelov M 2008 Phys. Rev. D 77, 43524
[7] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[8] Wcislo P, Morzyński P, Bober M, Cygan A, Lisak D, Ciurylo R and Zawada M 2016 Nat. Astron. 1 9
[9] Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 114 161301
[10] Stadnik Y V and Flambaum V V2014 Phys. Rev. Lett. 113 151301
[11] Pustelny S, Kimball D F J, Pankow C, Ledbetter M P, Wlodarczyk P, Wcislo P, Pospelov M, Smith J R, Read J, Gawlik W and Budker D 2013 Ann. Phys. 525 659
[12] Afach S, Budker D, DeCamp G, Dumont V, Grujić Z D, Guo H, Kimball D F J, Kornack T W, Lebedev V, Li W, Masia-Roig H, Nix S, Padniuk M, Palm C A, Pankow C, Penaflor A, Peng X, Pustelny S, Scholtes T, Smiga J A, Stalnaker J E, Weis A, Wickenbrock A and Wurm D 2018 Phys. Dark Univ. 22 162
[13] Masia-Roig H, Smiga J A, Budker D, Dumont V, Grujić Z D, Kim D, Kimball D F J, Lebedev V, Monroy M, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Shin Y C, Stalnaker J E, Sulai I, Weis A and Wickenbrock A 2020 Phys. Dark Univ. 28 100494
[14] Kimball D F J, Dudley J, Li Y, Thulasi S, Pustelny S, Budker D and Zolotorev M 2016 Phys. Rev. D 94 82005
[15] Yang Y, Wu T, Chen J, Peng X and Guo H 2021 Appl. Phys. B 127 40
[16] Kimball D F J 2015 New J. Phys. 17 073008
[17] Schmidt T 1937 Z. Phys. 106 358
[18] Klinkenberg P F A 1952 Rev. Mod. Phys. 24 63
[19] Blatt J M and Weisskopf V F 1979 Theoretical Nuclear Physics (New York: Springer-Verlag) p. 12
[20] Mayer M G 1950 Phys. Rev. 78 16
[21] Wu T, Blanchard J W, Centers G P, Fiigueroa N L, Garcon A, Graham P W, Kimball D F J, Rajendran S, Stadnik Y V, Sushkov A O, Wickenbrock A and Budker D 2019 Phys. Rev. Lett. 122 191302
[22] Wang Z, Peng X, Zhang R, Luo H, Li J, Xiong Z, Wang S and Guo H 2020 Phys. Rev. Lett. 124 193002
[23] Kimball D F J, Budker D, Eby J, Pospelov M, Pustelny S, Scholtes T, Stadnik Y V, Weis A and Wickenbrock A 2018 Phys. Rev. D 97 43002
[24] Zhang R, Xiao W, Ding Y, Feng Y, Peng X, Shen L, Sun C, Wu T, Wu Y, Yang Y, Zheng Z, Zhang X, Chen J and Guo H 2020 Sci. Adv. 6 24
[25] Kimball D F J, Dudley J, Li Y, Patel D and Valdez J 2017 Phys. Rev. D 96 75004
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[3] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[4] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[5] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2020, 29(9): 097401.
[8] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[9] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[10] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[11] Domain walls and their interactions in a two-component Bose-Einstein condensate
Ling-Zheng Meng(孟令正), Yan-Hong Qin(秦艳红), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2019, 28(6): 060502.
[12] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[13] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[14] Domain wall dynamics in magnetic nanotubes driven by an external magnetic field
Zai-Dong Li(李再东), Yue-Chuan Hu(胡月川), Peng-Bin He(贺鹏斌), Lin-Lin Sun(孙琳琳). Chin. Phys. B, 2018, 27(7): 077505.
[15] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
No Suggested Reading articles found!