ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses |
Xi Wang(王曦)1, Xiao-Mian Hu(胡晓棉)1, Sheng-Tao Wang(王升涛)1, and Hao Pan(潘昊)1,2,† |
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; 2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract A simplified theoretical model for the linear Rayleigh-Taylor instability of finite thickness elastic-plastic solid constantly accelerated by finite thickness viscous fluid is performed. With the irrotational assumption, it is possible to consider viscosity, surface tension, elasticity or plasticity effects simultaneously. The model considers thicknesses at rigid wall boundary conditions with the velocity potentials, and deals with solid elastic-plastic transition and fluid viscosity based on the velocity continuity and force equilibrium at contact interface. The complete analytical expressions of the amplitude motion equation, the growth rate, and the instability boundary are obtained for arbitrary Atwood number, viscosity, thicknesses of solid and fluid. The thicknesses effects of two materials on the growth rate and the instability boundary are discussed.
|
Received: 31 August 2020
Revised: 29 October 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
47.20.Ma
|
(Interfacial instabilities (e.g., Rayleigh-Taylor))
|
|
66.20.-d
|
(Viscosity of liquids; diffusive momentum transport)
|
|
46.35.+z
|
(Viscoelasticity, plasticity, viscoplasticity)
|
|
68.55.jd
|
(Thickness)
|
|
Fund: Project supported by of the Science Challenge Project of China (Grant No. TZ2018001). |
Corresponding Authors:
†Corresponding author. E-mail: pan_hao@iapcm.ac.cn
|
Cite this article:
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊) A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses 2021 Chin. Phys. B 30 044702
|
1 Bakhrakh S M, Drennov O B, Kovalev N P, Lebedev A I, Meshkov E E, Mikhailov A L, Nevmerzhitsky N V, Nizovtsev P N, Rayevsky V A, Simonov G P, Solovyev V P and Zhidov I G 1997 Lawrence Livermore National Laboratory Report No. UCRL-CR-126710 (unpublished) 2 Dimonte G, Gore R and Schneider M 1998 Phys. Rev. Lett. 80 1212 3 Plohr B J and Sharp D H 1998 Z. Angew. Math. Phys. 49 786 4 Lòpez Cela J J, Piriz A R, Serna Moreno M C, Tahir N A and Hoffmann D H H 2006 Laser Part. Beams 24 275 5 Zhou Y 2017 Phys. Rep. 720-722 1 6 Zhou Y 2017 Phys. Rep. 723-725 1 7 Barnes J F, Blewett P J, McQueen R G, Meyer K A,Venable D 1974 J. Appl. Phys. 45 727 8 Drucker D C 1980 Mecha. Today 5 37 9 Barnes J F, Janney D H, London R K, Meyer K A and Sharp D H 1980 J. Appl. Phys. 51 4678 10 Kalantar D H, Remington B A, Colvin J D, Mikaelian K O, Weber S V, Wiley L G, Wark J S, Loveridge A, Allen A M, Hauer A A and Meyers M A 2000 Phys. Plasmas 7 1999 11 Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S and Varentsov D 2005 Phys. Rev. Lett. 95 035001 12 McBride R D, Martin M R, Lemke R W, et al.2013 Phys. Plasmas 20 056309 13 Kobyakov D and Pethick C J 2014 Phys. Rev. Lett. 112 112504 14 Gorczyk W and Vogt K 2015 Gondwana Res. 27 196 15 Opie S, Loomis E, Peralta P, Shimada T and Johnson R P 2017 Phys. Rev. Lett. 118 195501 16 Knapp P F, Martin M R, Dolan D H, Cochrane K, Dalton D, Davis J, Jennings C A, Loisel G P, Romero D H, Smith I C, Yu E P, Weis M R, Mattsson T R, McBride R D, Peterson K, Schwarz J and Sinars D B 2017 Phys. Plasmas 24 042708 17 Colvin J D, Legrand M, Remington B A, Shurtz G and Weber SV 2003 J. Appl. Phys. 93 5287 18 Remington B A, Allen P, Bringa E M, Hawreliak J, Ho D, Lorenz K T, Lorenzana H, McNaney J M, Meyers M A, Pollaine S W, Rosolankova K, Sadik B, Schneider M S, Swift D, Wark J and Yaakobi B 2006 Mater. Sci. Technol. 22 474 19 Park H S, Lorenz K T, Cavallo R M, Pollaine S M, Prisbrey S T, Rudd R E, Becker R, Bernier J V and Remington B A 2010 Phys. Rev. Lett. 104 135504 20 Sinars D B, Slutz S A, Herrmann M, et al. 2010 Phys. Rev. Lett. 105 185001 21 Sinars D B, Slutz S A, Herrmann M, et al. 2010 Phys. Plasmas 18 056301 22 Tahir N A, Hoffmann D H H, Kozyreva A, Tauschwitz A, Shutov A, Maruhn J A, Spiller P, Neuner U, Jacoby J, Roth M, Bock R, Juranek H and Redmer R 2000 Phys. Rev. E 61 1975 23 Hall C A, Asay J R, Knudsen M D, Stygan W A, Spielman R B, Pointon T D, Reisman D B, Toor A and Cauble R C 2001 Rev. Sci. Instrum. 72 3587 24 Tahir N A, Juranek H, Shutov A, Redmer R, Piriz A R, Temporal M, Varentsov D, Udrea S, Hoffmann D H H, Deutsch C, Lomonosov I and Fortov V E 2003 Phys. Rev. B 67 184101 25 Temporal M, Piriz A R, Grandjouan N, Tahir N A and Hoffmann D H H 2003 Laser Part. Beams 21 609 26 Miles J W1966 General Dynamics Report No. GAMD-7335, AD 643161 (unpublished). 27 Robinson A C and Swegle J W 1989 J. Appl. Phys. 66 2859 28 Swegle J W and Robinson A C 1989 J. Appl. Phys. 66 2838 29 Terrones G 2005 Phys. Rev. E 71 036306 30 Piriz S A, Piriz A R and Tahir N A 2017 Phys. Rev. E 96 063115 31 Mikaelian K O 1996 Phys. Rev. E 54 3676 32 Park H S, Lorenz K T, Cavallo R M, Pollaine S M, Prisbrey S T, Rudd R E, Becker R C, Bernier J V and Remington B A 2010 Phys. Rev. Lett. 105 179602 33 Piriz A R, Lòpez Cela J J and Tahir N A 2010 Phys. Rev. Lett. 105 179601 34 Piriz A R, Lòpez Cela J J, Cortàzar O D, Tahir N A and Hoffmann D H H 2005 Phys. Rev. E 72 056313 35 Piriz A R, Lòpez Cela J J, Moreno M C S, Tahir N A and Hoffmann D H H 2006 Laser Part. Beams 24 275 36 Piriz A R, Lòpez Cela J J and Tahir N A 2009 Phys. Rev. E 80 046305 37 Piriz A R, Sun Y B and Tahir N A 2013 Phys. Rev. E 88 023026 38 Piriz A R, Sun Y B and Tahir N A 2014 Phys. Rev. E 89 063022 39 Sun Y B, Tao J J and He X T 2018 Phys. Rev. E 97 063109 40 Piriz A R, Piriz S A and Tahir N A 2019 Phys. Rev. E 100 063104 41 Bellman R and Pennington R H 1954 Quart. J. Mech. Appl. Math. 12 151 42 Piriz A R, Sun Y B and Tahir N A 2017 Eur. J. Phys. 38 015003 43 Gurtin M E and Anand L 2005 J. Mech. Phys. Solids 53 1624 44 Taylor G I 1950 Proc. R. Soc. London Ser. A 201 192 45 Landau L D and Lifshits E M 1987 Fluid Mechanics, 2nd edn. (Oxford: Pergamon) 46 Chandrasekhar S1961 Hydrodynamics and Hydromagnetic Stability (London: Oxford University Press) 47 Landau L D and Lifshits E M 1986 Theory of Elasticity, 3rd edn. (Oxford: Pergamon) 48 Piriz A R, Lòpez Cela J J and Tahir N A 2009 J. Appl. Phys. 105 116101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|