Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034704    DOI: 10.1088/1674-1056/ab6965
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces

Zhiyuan Li(李志远)1, Lifeng Wang(王立锋)1,2, Junfeng Wu(吴俊峰)2, Wenhua Ye(叶文华)1,2
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
2 Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871, China
Abstract  Taking the Rayleigh-Taylor instability with double interfaces as the research object, the interface coupling effects in the weakly nonlinear regime are studied numerically. The variation of Atwood numbers on the two interfaces and the variation of the thickness between them are taken into consideration. It is shown that, when the Atwood number on the lower interface is small, the amplitude of perturbation growth on the lower interface is positively related with the Atwood number on the upper interface. However, it is negatively related when the Atwood number on the lower interface is large. The above phenomenon is quantitatively studied using an analytical formula and the underlying physical mechanism is presented.
Keywords:  Rayleigh-Taylor instability      weakly nonlinear regime      numerical simulation  
Received:  11 November 2019      Revised:  06 January 2020      Accepted manuscript online: 
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575033, 11675026, and 11975053) and the Science Foundation from China Academy of Engineering Physics (Grant No. CX2019033).
Corresponding Authors:  Wenhua Ye     E-mail:  ye_wenhua@iapcm.ac.cn

Cite this article: 

Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华) Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces 2020 Chin. Phys. B 29 034704

[1] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[2] Taylor G 1950 Proc. R. Soc. London A 201 192
[3] Wang L F, et al. 2017 Sci. China-Phys. Mech. Astron. 60 055201
[4] Gamezo V N, et al. 2003 Science 299 77
[5] Tao Y S, et al. 2012 Acta Phys. Sin. 61 075207 (in Chinese)
[6] Zhang J, et al. 2018 Phys. Plasmas 25 022701
[7] Youngs D L 1984 Physica D: Nonlinear Phenomena 12 32
[8] Xu Z, et al. 2009 Chin. Phys. Lett. 26 084703
[9] Betti R and Hurricane O A 2016 Nat. Phys. 12 435
[10] Amendt P, et al. 2010 Nucl. Fusion 50 105006
[11] Canaud B, et al. 2011 Nucl. Fusion 51 062001
[12] Bodner S 1974 Phys. Rev. Lett. 33 761
[13] Takabe H 1985 Phys. Fluids 28 367
[14] Wang L F, et al. 2012 Phys. Plasmas 19 012706
[15] Wang L F, et al. 2012 Phys. Plasmas 19 100701
[16] Wang L F, et al. 2016 Phys. Plasmas 23 052713
[17] Mikaelian K O 1982 Phys. Rev. A 26 2140
[18] Mikaelian K O 1983 Phys. Rev. A 28 1637
[19] Mikaelian K O 1990 Phys. Rev. A 42 4944
[20] Mikaelian K O 1995 Phys. Fluids 7 888
[21] Mikaelian K O 1990 Phys. Rev. A 42 3400
[22] Mikaelian K O 2005 Phys. Fluids 17 094105
[23] Wang L F, et al. 2014 Phys. Plasmas 21 122710
[24] Guo H Y, et al. 2017 Chin. Phys. Lett. 34 045201
[25] Guo H Y, et al. 2017 Chin. Phys. B 26 125202
[26] Einfeldt B 1988 SIAM Journal on Numerical Analysis 25 294
[27] Roe P L 1986 Ann. Rev. Fluid Mech. 18 337
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[4] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[12] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[13] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[14] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[15] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
No Suggested Reading articles found!