Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044703    DOI: 10.1088/1674-1056/abd745
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study

Qing-Yu Zhang(张庆宇)1, Qi-Peng Dong(董其鹏)1, Shan-Lin Wang(王山林)2, Zhi-Jun Wang(王志军)3, and Jian Zhou(周健)1,†
1 Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China; 2 State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; 3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  A thermal multiphase lattice Boltzmann (LB) model is used to study the behavior of droplet impact on hot surface and the relevant heat transfer properties. After validating the correctness of the codes through the D2 law, the simulations of intrinsic contact angle and the temperature-dependent surface tension are performed. The LB model is then used to simulate the droplet impact on smooth and micro-hole heated surface. On the smooth surface, the impinging droplet is reluctant to rebound, unless the intrinsic wettability of the solid surface is fairly good. On the micro-hole surface, however, the micro-holes provide favorable sites for generating a high-pressure vapor cushion underneath the impinging droplet, which thereby facilitates the continuous droplet rebound. For the continuously rebounding droplet. The time evolution of volume and temperature display obvious oscillations. The achievable height of the rebounding droplet increases as the intrinsic wettability of the solid surface becomes better, and the maximum transient heat flux is found to be directly proportional to the droplet rebounding height. Within a certain time interval, the continuous rebounding behavior of the droplet is favorable for enhancing the total heat quantity/heat transfer efficiency, and the influence of intrinsic wettability on the total heat during droplet impingement is greater than that of the superheat. The LB simulations not only present different states of droplets on hot surfaces, but also guide the design of the micro-hole surface with desirable heat transfer properties.
Keywords:  droplet rebound      heat transfer      droplet impact      lattice Boltzmann model  
Received:  22 September 2020      Revised:  22 December 2020      Accepted manuscript online:  30 December 2020
PACS:  47.55.dr (Interactions with surfaces)  
  68.03.Fg (Evaporation and condensation of liquids)  
  44.35.+c (Heat flow in multiphase systems)  
  47.61.Jd (Multiphase flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901148 and 51874204) and the Fund of the State Key Laboratory of Solidification Processing (Northwestern Polytechnical University), China (Grant No. SKLSP202006).
Corresponding Authors:  Corresponding author. E-mail: jzhou@suda.edu.cn   

Cite this article: 

Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健) Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study 2021 Chin. Phys. B 30 044703

1 Liang G and Mudawar I 2017 Int. J. Heat Mass Transfer 106 103
2 Raman K A 2018 J. Colloid Interface Sci. 516 232
3 Quéré D 2013 Ann. Rev. Fluid Mech. 45 197
4 Gradeck M, Seiler N, Ruyer P and Maillet D 2013 Exp. Therm. Fluid Sci. 47 14
5 Moon J H, Cho M and Lee S H 2016 Int. J. Heat Mass Transfer 97 308
6 Shen J, Graber C, Liburdy J, Pence D and Narayanan V 2010 Exp. Therm. Fluid Sci. 34 496
7 Guo C, Maynes D, Crockett J and Zhao D 2019 Int. J. Heat Mass Transfer 137 857
8 Sun D 2020 Appl. Math. Lett. 103 106222
9 Xing H, Dong X, Sun D and Han Y 2020 J. Mater. Sci. Technol. 57 26
10 Ledesma-Aguilar R, Vella D and Yeomans J M 2014 Soft Matter 10 8267
11 Zhou P, Liu W and Liu Z 2019 Int. J. Heat Mass Transfer 131 1
12 Li H, Fang W, Li Y, Yang Q, Li M, Li Q, Feng X Q and Song Y 2019 Nat. Commun. 10 950
13 Pasandideh-Fard M, Aziz S D, Chandra S and Mostaghimi J 2001 Int. J. Heat Fluid Flow 22 201
14 He Y L, Liu Q, Li Q and Tao W Q 2019 Int. J. Heat Mass Transfer 129 160
15 Chai Z, Liang H, Du R and Shi B 2019 SIAM J. Sci. Comput. 41 B746
16 Huang J J, Xiao X B and Li Y J 2018 Langmuir 34 14186
17 Ma X, Cheng P and Quan X 2018 Int. J. Heat Mass Transfer 127 1013
18 Li Q, Yu Y, Zhou P and Yan H J 2018 Appl. Therm. Eng. 132 490
19 Li Q, Kang Q J, Francois M M and Hu A J 2016 Soft Matter 12 302
20 Qiao L, Zeng Z, Xie H, Liu H and Zhang L 2019 Int. J Heat Mass Transfer 128 1296
21 Zhang Q, Sun D, Zhang Y and Zhu M 2014 Langmuir 30 12559
22 Zhang Q, Zhu C and Zhu M 2018 Commun. Comput. Phys. 23 1150
23 Li Q, Kang Q J, Francois M M, He Y L and Luo K H 2015 Int. J. Heat Mass Transfer 85 787
24 Li Q, Zhou P and Yan H 2016 Langmuir 32 9389
25 Zhang Q, Sun D, Pan S and Zhu M 2020 Int. J. Heat Mass Transfer 146 118838
26 Yuan P and Schaefer L 2006 Phys. Fluids 18 042101
27 Law C K 1982 Prog. Energy Combust. Sci. 8 171
28 Vargaftik N B, Volkov B N and Voljak L D 1983 J. Phys. Chem. Ref. Data 12 817
29 Bourrianne P, Lv C and Quéré D 2019 Sci. Adv. 5 eaaw0304
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[4] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[5] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[6] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[7] Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method
Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄). Chin. Phys. B, 2021, 30(4): 044701.
[8] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[9] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[10] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[11] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[12] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[13] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[14] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[15] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
No Suggested Reading articles found!