1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China; 2 College of Computer and Information, Hohai University, Nanjing 210000, China
Abstract The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect. The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties. In the present work, the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model (MRT-LB). The model is modified by involving the piecewise linear equation of state and improved forcing scheme. The fluid-solid interaction in the model is employed to adjust the wettability of solid surface. Moreover, the validity of the model is verified by comparison with experimental results and grid-independence verification. Finally, the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field, pressure field, collapse time, and jet velocity. The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM. The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold, accelerating collapse and increasing jet velocity.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874140 and 11574072), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201913), the National Key Research and Development Program of China (Grant No. 2016YFC0401600), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. 2018B741X14 and KYCX18\textunderscore 0552).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.