Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 038101    DOI: 10.1088/1674-1056/abc547
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Vertical GaN Shottky barrier diode with thermally stable TiN anode

Da-Ping Liu(刘大平)1,†, Xiao-Bo Li(李小波)2,†, Tao-Fei Pu(蒲涛飞)2,‡, Liu-An Li(李柳暗)3, Shao-Heng Cheng(成绍恒)4, and Qi-Liang Wang(王启亮)4,§
1 Department of Physics, Xinxiang University, Xinxiang 453003, China; 2 Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan; 3 School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China; 4 State Key Laboratory of Superhard Material, Jilin University, Changchun 130012, China
Abstract  Vertical GaN Schottky barrier diodes with TiN anodes were fabricated to investigate the electrical performance. The turn-on voltage and specific on-resistance of diodes are deduced to be approximately 0.41 V and 0.98 mΩ cm2, respectively. The current-voltage curves show rectifying characteristics under different temperatures from 25 °C to 200 °C, implying a good thermal stability of TiN/GaN contact. The low-frequency noise follows a 1/f behavior due to the multiple traps and/or barrier inhomogeneous at TiN/GaN interface. The trapping/de-trapping between traps and Fermi level causes the slight capacitance dispersion under reverse voltage.
Keywords:  GaN      Vertical Schottky barrier diode      TiN      interface quality  
Received:  20 September 2020      Revised:  11 October 2020      Accepted manuscript online:  28 October 2020
PACS:  81.05.Ea (III-V semiconductors)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  52.59.Mv (High-voltage diodes)  
  84.30.Jc (Power electronics; power supply circuits)  
Fund: Project supported by the Open Project of State Key Laboratory of Superhard Materials, Jilin University (Grant No. 201906), Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics (Grant No. 202006), and the Science and Technology Program of Ningbo (Grant No. 2019B10129).
Corresponding Authors:  D. Liu and X. Li contributed equally to this work. Corresponding author. E-mail: fbc_ptf@126.com §Corresponding author. E-mail: wangqiliang@jlu.edu.cn   

Cite this article: 

Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮) Vertical GaN Shottky barrier diode with thermally stable TiN anode 2021 Chin. Phys. B 30 038101

1 Baliga B J 2013 Semicond. Sci. Technol. 28 074011
2 Chen K J, H\"aberlen O, Lidow A et al.2017 IEEE Trans. Electron Devices 64 779
3 Oka T 2019 Jpn. J. Appl. Phys. 58 SB0805
4 Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D: Appl. Phys. 51 273001
5 Hu J, Zhang Y, Sun M et al. 2018 Mater. Sci. Semicond. Process. 78 75
6 Pristavu G, Brezeanu G, Pascu R et al. 2019 Mater. Sci. Semicond. Proc. 94 64
7 Han S, Yang S and Sheng K 2018 IEEE Electron Device Lett. 39 572
8 Ao J P, Kikuta D, Kubota N et al. 2003 IEEE Electron Device Lett. 24 500
9 Guo J, Pan F, Feng M et al. 1996 J. Appl. Phys. 80 1623
10 Li L, Kishi A, Liu Q et al. 2014 IEEE J. Electron Devices Soc. 2 168
11 Li X, Hoshi T, Li L et al. 2019 Mater. Sci. Semiconduct. Proc. 93 1
12 Li L, Chen J, Gu X et al. 2018 Superlattice Microst. 123 274
13 Li L A, Kishi A, Shiraishi Tet al.2013 Jpn. J. Appl. Phys. 52 11
14 Cheung S K and Cheung N W 1986 Appl. Phys. Lett. 49 85
15 Yildirim N, Ejderha K and Turut A 2010 J. Appl. Phys. 108 114506
16 Osvald J 1999 J. Appl. Phys. 85 1935
17 Kumar A, Kumar V and Singh R 2016 J. Phys. D: Appl. Phys. 49 47
18 Zheng Y, Yang F, He L et al. 2016 IEEE Electron Device Lett. 37 1193
19 Zhang Y M, Wang J F, Cai D M et al. 2020 Chin. Phys. B 29 026104
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[5] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[6] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[7] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[8] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[9] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[10] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[11] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[12] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[13] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[14] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[15] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
No Suggested Reading articles found!