Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036202    DOI: 10.1088/1674-1056/abca20
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study

Diyou Jiang(姜迪友)1,2,†, Wenbo Xiao(肖文波)1,2, and Sanqiu Liu(刘三秋)3
1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China; 2 Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, China; 3 Department of Physics, Nanchang University, Nanchang 330047, China
Abstract  Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material, and it has advantages in certain aspects compared with Ti2AlC, Ti3AlC2, and Ti3SiC2 structural materials. In this paper, quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural, mechanical, electronic properties, and Debye temperature. Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure (0-110 GPa). At zero pressure, quaternary carbide Ti3NiAl2C ceramics only has three bonds: Ti-Al, Ni-Al, and Ti-C. However, at pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds form. When the pressure reaches 20 GPa, the covalent bonds change to metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72% of its original volume at most. Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics. At 50-60 GPa, its mechanical strength can be comparable to pure tungsten, and the material changes from brittleness to ductility. However, the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure. In addition, we also investigated the Debye temperature, density, melting point, hardness, and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
Keywords:  quaternary carbide Ti3NiAl2C ceramics      structural properties      mechanical properties      electronic properties      Debye temperature      first-principles  
Received:  02 October 2020      Revised:  02 November 2020      Accepted manuscript online:  13 November 2020
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.de (Elastic moduli)  
  62.20.fk (Ductility, malleability)  
  62.20.mj (Brittleness)  
Fund: Project supported by Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB) (Grant No. 21C-OP-202013), the National Natural Science Foundation of China (Grant No. 12064027), the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800), and the Scientific Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ180973).
Corresponding Authors:  Corresponding author. E-mail: jiangdiyou2005@163.com   

Cite this article: 

Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋) Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study 2021 Chin. Phys. B 30 036202

1 Wang J Y and Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415
2 Eklund P, Beckers M, Jansson U, H\"ogberg H and Hultman L 2010 Thin Solid Films. 518 1851
3 Jovic V D, Jovic B M, Gupta S, El-Raghy T and Barsoum M W 2006 Corros. Sci. 48 4274
4 Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X and Pister C 2007 J. Nucl. Mater. 371 176
5 Barnes L A, Dietz Rago N L and Leibowitz L 2008 J. Nucl. Mater. 373 424
6 Wang Q M, Garkas W, Renteria A F, Leyens C, Lee H W and Kim K H 2011 Corros. Sci. 53 2948
7 Haftani M, Saeedi Heydari M, Baharvandi H R and Ehsani N 2016 Int. J. Refract. Met. Hard Mater. 61 51
8 Barsoum M W, Yoo H I, Polushina I K, Rud V Yu, Rud Yu V and El-Raghy T 2000 Phys. Rev. B 62 10194
9 Wang X H and Zhou Y C 2010 J. Mater. Sci. Technol. 26 385
10 Sun Z M 2011 Int. Mater. Rev. 56 143
11 Xiao J, Yang T, Wang C, Xue J and Wang Y 2015 J. Am. Ceram. Soc. 98 1323
12 Clark D W, Zinkle S J, Patel M K and Parish C M 2016 Acta Mater. 105 130
13 Tallman D J, He L, Gan J, Caspi E N, Hoffman E N and Barsoum M W 2017 J. Nucl. Mater. 484 120
14 Wang C, Yang T, Tracy C L, Xiao J, Liu S, Fang Y, Yan Z, Ge W, Xue J, Zhang J, Wang J, Huang Q, Ewing R C and Wang Y 2018 Acta Mater. 144 432
15 Su R R, Zhang H L, Shi L Q and Wen H M 2019 J. Eur. Ceram. Soc. 39 1993
16 Napp\'e J C, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Monnet I 2009 J. Nucl. Mater. 385 304
17 Hoffman E N, Vinson D W, Sindelar R L, Tallman D J, Kohse G and Barsoum M W 2012 Nucl. Eng. Des. 244 17
18 Tallman D J On the Potential of MAX Phases for Nuclear Applications(Drexel University)
19 Li W T, Wang Z Y, Shuai J T, Xu B B, Wang A Y and Ke P L 2019 Ceram. Int. 45 13912
20 Nicola\"í J, Furgeaud C, Fonrose B W, Bail C and Beaufort M F 2018 Mater. Des. 144 209
21 Pazniak A, Bazhin P, Shchetinin I, Kolesnikov E, Prokopets A, Shplis N, Stolin A and Kuznetsov D 2019 Ceram. Int. 45 2020
22 Pazniak A, Bazhin P, Shplis N, Kolesnikov E, Shchetinin I, Komissarov A, Polcak J, Stolin A,Kuznetsov D 2019 Mater. Des. 183 108143
23 Islaka B Y and Ayas E 2019 Ceram. Int. 45 12297
24 Huang X C, Feng Y, Qian G and Zhou Z J 2019 Ceram. Int. 45 20297
25 Sridharan S, Nowotny H and Wayne S F 1983 Monatsh. Chem. 114 127
26 Qin J Q and He D W 2013 Ceram. Int. 39 9361
27 Feng W X, Cui S X, Hu H Q, Zhang G Q and Lv Z T 2011 J. Phys. Chem. Solids 72 740
28 Mao P L, Yu B, Liu Z, Wang F and Ju Y 2014 Comput Mater Sci 88 61
29 Ma Y M, Oganov A R and Xie Y 2008 Phys. Rev. B 78 014102
30 Xiao H Y, Jiang X D, Duan G, Gao F, Zu X T and Weber W J 2010 Comput. Mater. Sci. 48 768
31 Ma S Q, Liu Y, Ye J W, Zhang H and Pang J 2014 Comput. Mater. Sci. 95 620
32 Yuan X L, Wei D Q, Chen X R, Zhang Q M and Gong Z Z 2011 J. Alloys Compd. 509 769
33 Guo F F, Zhou X L, Li G J, Huang X H, Xue L, Liu D S and Jiang D Y 2020 Solid State Commun. 311 113856
34 Jiang D Y, Zhong S Y, Xiao W B, Liu D S, Wu M S and Liu S Q Int. J. Quantum Chem. 120 e26231
35 Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H and Han P D 2015 J. Alloys Compd. 621 383
36 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212
37 Feng X K, Shi S Q, Shen J Y, Shang S L, Yao M Y and Liu Z K 2016 J. Nucl. Mater. 479 461
38 Shang S L, Hector Jr L G, Shi S Q, Qi Y, Wang Y and Liu Z K 2012 Acta Mater. 60 5204
39 Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202
40 Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Hangchen Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S and Tang W H 2009 J. Power Sources 194 830
41 Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S and Chen L Q 2009 Phys. Lett. A 373 4096
42 Zhang C Y, Tian F Y and Ni X D 2020 Chin. Phys. B 29 036201
43 Li W J and Wang C Y 2020 Chin. Phys. B 29 026102
44 Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
45 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
46 Bl\"ochl P E 1994 Phys. Rev. B 50 17953
47 Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
48 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
49 Birch F 1978 J. Geophys. Res. 83 1257
50 Voigt W 1889 Annalen der Physik (Leipzig). 38 573
51 Reuss A 1929 Ztschrf. Angew. Math. Mech. 9 49
52 Hill R 1952 Proc. Phys. Soc. A 65 349
53 Hill R 1963 J. Mech. Phys. Solids. 11 357
54 Anderson O L 1963 J. Phys. Chem. Solids 24 909
55 Wachter P, Filzmoser M and Rebizant J 2001 Physica B 293 199
56 Jiang D Y and Liu S Q Rare Metal. Mat. Eng. 45 2895
57 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 106 34
58 Jiang D Y, Wang Q L, Hu W, Wei Z Q, Tong J B and Wan H Q 2016 J. Mater. Res. 31 3401
59 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 112 123
60 Jiang D Y, Ouyang C Y and Liu S Q 2017 Fusion Eng. Des. 121 227
61 Jiang D Y, Zhou Q, Xue L, Wang T and Hu J F 2018 Fusion Eng. Des. 130 56
62 Jiang D Y, Wang T, Huang X H, Zou X Z and Hu J F 2018 Fusion Eng. Des. 137 295
63 Jiang D Y, Zhou Q, Liu W H, Wang T and Hu J F 2019 Physica B 552 165
64 Jiang D Y, Xue L, Huang X M, Wang T and Hu J F 2019 J. Mater. Res. 34 290
65 Jiang D Y, Wu M S, Liu D S, Li F F, Chai M G and Liu S Q 2019 Metals 9 967
66 Luo M, Jiang D Y, Liu S Q and Ouyang C Y 2019 J. Phys. Chem. C 123 1913
67 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
68 Meradji H, Drablia S and Ghemid S 2004 Phys. Status Solidi B 241 2881
69 Pugh S F 1954 Philos. Mag. A. 45 823
70 Gao Q H, Du A and Yang Z J 2017 Mod. Phys. Lett. B 31 1750016
71 Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H and Hou H 2018 Comput. Mater. Sci. 154 365
72 Cao Y, Zhu J C, Liu Y, Nong Z S and Lai Z H 2013 Comput. Mater. Sci. 69 40
73 Tang B Y, Yu W Y, Zeng X Q, Ding W J and Gray M F 2008 Mater. Sci. Eng. A. 489 444
74 Yan M F and Chen H T 2014 Comput. Mater. Sci. 88 81
75 Wu J Y, Zhang B and Zhan Y Z 2017 Comput. Mater. Sci. 131 146
76 Tohei T, Kuwabara A, Oba F and Tanaka I 2006 Phys. Rev. B 73 064304
77 Chen Q, Huang Z W, Zhao Z D and Hu C K 2013 Comput. Mater. Sci. 67 196
78 Richardson R C D 1967 Wear 10 291
79 Xu S H, Zhang F Q, Peng P and Liu J S Acta Metal. Sinica. 46 97
80 Liu Z T Y, Gall D and Khare S V 2014 Phys. Rev. B 90 134102
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[11] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[15] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
No Suggested Reading articles found!