CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study |
Diyou Jiang(姜迪友)1,2,†, Wenbo Xiao(肖文波)1,2, and Sanqiu Liu(刘三秋)3 |
1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China; 2 Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB), Ningde 352100, China; 3 Department of Physics, Nanchang University, Nanchang 330047, China |
|
|
Abstract Quaternary carbide Ti3NiAl2C ceramics has been investigated as a potential nuclear fusion structural material, and it has advantages in certain aspects compared with Ti2AlC, Ti3AlC2, and Ti3SiC2 structural materials. In this paper, quaternary carbide Ti3NiAl2C ceramics is pressurized to investigate its structural, mechanical, electronic properties, and Debye temperature. Quaternary carbide Ti3NiAl2C ceramics still maintains a cubic structure under pressure (0-110 GPa). At zero pressure, quaternary carbide Ti3NiAl2C ceramics only has three bonds: Ti-Al, Ni-Al, and Ti-C. However, at pressures of 20 GPa, 30 GPa, 40 GPa, 60 GPa, and 70 GPa, new Ti-Ni, Ti-Ti, Al-Al, Ti-Al, and Ti-Ti bonds form. When the pressure reaches 20 GPa, the covalent bonds change to metallic bonds. The volume of quaternary carbide Ti3NiAl2C ceramics can be compressed to 72% of its original volume at most. Pressurization can improve the mechanical strength and ductility of quaternary carbide Ti3NiAl2C ceramics. At 50-60 GPa, its mechanical strength can be comparable to pure tungsten, and the material changes from brittleness to ductility. However, the degree of anisotropy of quaternary carbide Ti3NiAl2C ceramics increases with the increasing pressure. In addition, we also investigated the Debye temperature, density, melting point, hardness, and wear resistance of quaternary carbide Ti3NiAl2C ceramics under pressure.
|
Received: 02 October 2020
Revised: 02 November 2020
Accepted manuscript online: 13 November 2020
|
PACS:
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.20.de
|
(Elastic moduli)
|
|
62.20.fk
|
(Ductility, malleability)
|
|
62.20.mj
|
(Brittleness)
|
|
Fund: Project supported by Fujian Science & Technology Innovation Laboratory for Energy Devices of China (21C-LAB) (Grant No. 21C-OP-202013), the National Natural Science Foundation of China (Grant No. 12064027), the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800), and the Scientific Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ180973). |
Corresponding Authors:
†Corresponding author. E-mail: jiangdiyou2005@163.com
|
Cite this article:
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋) Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study 2021 Chin. Phys. B 30 036202
|
1 Wang J Y and Zhou Y C 2009 Annu. Rev. Mater. Res. 39 415 2 Eklund P, Beckers M, Jansson U, H\"ogberg H and Hultman L 2010 Thin Solid Films. 518 1851 3 Jovic V D, Jovic B M, Gupta S, El-Raghy T and Barsoum M W 2006 Corros. Sci. 48 4274 4 Was G S, Ampornrat P, Gupta G, Teysseyre S, West E A, Allen T R, Sridharan K, Tan L, Chen Y, Ren X and Pister C 2007 J. Nucl. Mater. 371 176 5 Barnes L A, Dietz Rago N L and Leibowitz L 2008 J. Nucl. Mater. 373 424 6 Wang Q M, Garkas W, Renteria A F, Leyens C, Lee H W and Kim K H 2011 Corros. Sci. 53 2948 7 Haftani M, Saeedi Heydari M, Baharvandi H R and Ehsani N 2016 Int. J. Refract. Met. Hard Mater. 61 51 8 Barsoum M W, Yoo H I, Polushina I K, Rud V Yu, Rud Yu V and El-Raghy T 2000 Phys. Rev. B 62 10194 9 Wang X H and Zhou Y C 2010 J. Mater. Sci. Technol. 26 385 10 Sun Z M 2011 Int. Mater. Rev. 56 143 11 Xiao J, Yang T, Wang C, Xue J and Wang Y 2015 J. Am. Ceram. Soc. 98 1323 12 Clark D W, Zinkle S J, Patel M K and Parish C M 2016 Acta Mater. 105 130 13 Tallman D J, He L, Gan J, Caspi E N, Hoffman E N and Barsoum M W 2017 J. Nucl. Mater. 484 120 14 Wang C, Yang T, Tracy C L, Xiao J, Liu S, Fang Y, Yan Z, Ge W, Xue J, Zhang J, Wang J, Huang Q, Ewing R C and Wang Y 2018 Acta Mater. 144 432 15 Su R R, Zhang H L, Shi L Q and Wen H M 2019 J. Eur. Ceram. Soc. 39 1993 16 Napp\'e J C, Grosseau Ph, Audubert F, Guilhot B, Beauvy M, Benabdesselam M and Monnet I 2009 J. Nucl. Mater. 385 304 17 Hoffman E N, Vinson D W, Sindelar R L, Tallman D J, Kohse G and Barsoum M W 2012 Nucl. Eng. Des. 244 17 18 Tallman D J On the Potential of MAX Phases for Nuclear Applications(Drexel University) 19 Li W T, Wang Z Y, Shuai J T, Xu B B, Wang A Y and Ke P L 2019 Ceram. Int. 45 13912 20 Nicola\"í J, Furgeaud C, Fonrose B W, Bail C and Beaufort M F 2018 Mater. Des. 144 209 21 Pazniak A, Bazhin P, Shchetinin I, Kolesnikov E, Prokopets A, Shplis N, Stolin A and Kuznetsov D 2019 Ceram. Int. 45 2020 22 Pazniak A, Bazhin P, Shplis N, Kolesnikov E, Shchetinin I, Komissarov A, Polcak J, Stolin A,Kuznetsov D 2019 Mater. Des. 183 108143 23 Islaka B Y and Ayas E 2019 Ceram. Int. 45 12297 24 Huang X C, Feng Y, Qian G and Zhou Z J 2019 Ceram. Int. 45 20297 25 Sridharan S, Nowotny H and Wayne S F 1983 Monatsh. Chem. 114 127 26 Qin J Q and He D W 2013 Ceram. Int. 39 9361 27 Feng W X, Cui S X, Hu H Q, Zhang G Q and Lv Z T 2011 J. Phys. Chem. Solids 72 740 28 Mao P L, Yu B, Liu Z, Wang F and Ju Y 2014 Comput Mater Sci 88 61 29 Ma Y M, Oganov A R and Xie Y 2008 Phys. Rev. B 78 014102 30 Xiao H Y, Jiang X D, Duan G, Gao F, Zu X T and Weber W J 2010 Comput. Mater. Sci. 48 768 31 Ma S Q, Liu Y, Ye J W, Zhang H and Pang J 2014 Comput. Mater. Sci. 95 620 32 Yuan X L, Wei D Q, Chen X R, Zhang Q M and Gong Z Z 2011 J. Alloys Compd. 509 769 33 Guo F F, Zhou X L, Li G J, Huang X H, Xue L, Liu D S and Jiang D Y 2020 Solid State Commun. 311 113856 34 Jiang D Y, Zhong S Y, Xiao W B, Liu D S, Wu M S and Liu S Q Int. J. Quantum Chem. 120 e26231 35 Qi L, Jin Y C, Zhao Y H, Yang X M, Zhao H and Han P D 2015 J. Alloys Compd. 621 383 36 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212 37 Feng X K, Shi S Q, Shen J Y, Shang S L, Yao M Y and Liu Z K 2016 J. Nucl. Mater. 479 461 38 Shang S L, Hector Jr L G, Shi S Q, Qi Y, Wang Y and Liu Z K 2012 Acta Mater. 60 5204 39 Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202 40 Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Hangchen Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S and Tang W H 2009 J. Power Sources 194 830 41 Shi S Q, Zhang H, Ke X Z, Ouyang C Y, Lei M S and Chen L Q 2009 Phys. Lett. A 373 4096 42 Zhang C Y, Tian F Y and Ni X D 2020 Chin. Phys. B 29 036201 43 Li W J and Wang C Y 2020 Chin. Phys. B 29 026102 44 Kresse G and Hafner J 1993 Phys. Rev. B 48 13115 45 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169 46 Bl\"ochl P E 1994 Phys. Rev. B 50 17953 47 Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298 48 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 49 Birch F 1978 J. Geophys. Res. 83 1257 50 Voigt W 1889 Annalen der Physik (Leipzig). 38 573 51 Reuss A 1929 Ztschrf. Angew. Math. Mech. 9 49 52 Hill R 1952 Proc. Phys. Soc. A 65 349 53 Hill R 1963 J. Mech. Phys. Solids. 11 357 54 Anderson O L 1963 J. Phys. Chem. Solids 24 909 55 Wachter P, Filzmoser M and Rebizant J 2001 Physica B 293 199 56 Jiang D Y and Liu S Q Rare Metal. Mat. Eng. 45 2895 57 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 106 34 58 Jiang D Y, Wang Q L, Hu W, Wei Z Q, Tong J B and Wan H Q 2016 J. Mater. Res. 31 3401 59 Jiang D Y, Ouyang C Y and Liu S Q 2016 Fusion Eng. Des. 112 123 60 Jiang D Y, Ouyang C Y and Liu S Q 2017 Fusion Eng. Des. 121 227 61 Jiang D Y, Zhou Q, Xue L, Wang T and Hu J F 2018 Fusion Eng. Des. 130 56 62 Jiang D Y, Wang T, Huang X H, Zou X Z and Hu J F 2018 Fusion Eng. Des. 137 295 63 Jiang D Y, Zhou Q, Liu W H, Wang T and Hu J F 2019 Physica B 552 165 64 Jiang D Y, Xue L, Huang X M, Wang T and Hu J F 2019 J. Mater. Res. 34 290 65 Jiang D Y, Wu M S, Liu D S, Li F F, Chai M G and Liu S Q 2019 Metals 9 967 66 Luo M, Jiang D Y, Liu S Q and Ouyang C Y 2019 J. Phys. Chem. C 123 1913 67 Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 68 Meradji H, Drablia S and Ghemid S 2004 Phys. Status Solidi B 241 2881 69 Pugh S F 1954 Philos. Mag. A. 45 823 70 Gao Q H, Du A and Yang Z J 2017 Mod. Phys. Lett. B 31 1750016 71 Zhao Y H, Deng S J, Liu H, Zhang J X, Guo Z H and Hou H 2018 Comput. Mater. Sci. 154 365 72 Cao Y, Zhu J C, Liu Y, Nong Z S and Lai Z H 2013 Comput. Mater. Sci. 69 40 73 Tang B Y, Yu W Y, Zeng X Q, Ding W J and Gray M F 2008 Mater. Sci. Eng. A. 489 444 74 Yan M F and Chen H T 2014 Comput. Mater. Sci. 88 81 75 Wu J Y, Zhang B and Zhan Y Z 2017 Comput. Mater. Sci. 131 146 76 Tohei T, Kuwabara A, Oba F and Tanaka I 2006 Phys. Rev. B 73 064304 77 Chen Q, Huang Z W, Zhao Z D and Hu C K 2013 Comput. Mater. Sci. 67 196 78 Richardson R C D 1967 Wear 10 291 79 Xu S H, Zhang F Q, Peng P and Liu J S Acta Metal. Sinica. 46 97 80 Liu Z T Y, Gall D and Khare S V 2014 Phys. Rev. B 90 134102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|