Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036201    DOI: 10.1088/1674-1056/abc67c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles

Xiang Yu(俞翔)†, Li-Chen Wang(王利晨)†, Zheng-Rui Li(李峥睿)†, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉)‡
1 Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  High quality Zn0.5CoxFe2.5-xO4 (x = 0, 0.05, 0.1, 0.15) serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method, and Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2. The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+. When the doping amount is 0.1, the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature. In the Zn0.5CoxFe2.5-xO4/SiO2 serial samples, the maximum value of specific loss power (SLP) with 1974 W/g metal can also be found at doping amount of x = 0.1. The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.
Keywords:  magnetic nanoparticles      magnetic anisotropy      Zn0.5CoxFe2.5-xO4/SiO2      magnetic hyperthermia  
Received:  25 June 2020      Revised:  29 September 2020      Accepted manuscript online:  31 October 2020
PACS:  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  75.47.Lx (Magnetic oxides)  
  76.60.Es (Relaxation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771124, 51571146, and 51701130).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: shulihe@cnu.edu.cn   

Cite this article: 

Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉) Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles 2021 Chin. Phys. B 30 036201

1 Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao L, Hou Y, Wu Z, Du Y, Fan H, Tian J and Liang X 2019 ACS Nano 13 8811
2 Guisasola E, As\'ín L, Beola L, de la Fuente J M, Baeza A and Vallet-Reg\'í M 2018 ACS Appl. Mater. Interfaces 10 12518
3 Tay Z W, Chandrasekharan P, Chiu-Lam A, Hensley D W, Dhavalikar R, Zhou X Y, Yu E Y, Goodwill P W, Zheng B, Rinaldi C and Conolly S M 2018 ACS Nano 12 3699
4 Wang B, Chan K F, Yu J, Wang Q, Yang L, Chiu P W Y and Zhang L 2018 Adv. Funct. Mater. 28 1705701
5 Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q and Zhu X 2018 J. Control. Release 272 145
6 Albarqi H A, Wong L H, Schumann C, Sabei F Y, Korzun T, Li X, Hansen M N, Dhagat P, Moses A S, Taratula O and Taratula O 2019 ACS Nano 13 6383
7 Wu H, Liu L, Song L, Ma M, Gu N and Zhang Y 2019 ACS Nano 13 14013
8 Zhao L Y, Liu J Y, Ouyang W W, Li D Y, Li L, Li L Y and Tang J T 2013 Chin. Phys. B 22 108104
9 Derfus A M, von Maltzahn G, Harris T J, Duza T, Vecchio K S, Ruoslahti E and Bhatia S N 2007 Adv. Mater. 19 3932
10 Chen R, Christiansen M G, Sourakov A, Mohr A, Matsumoto Y, Okada S, Jasanoff A and Anikeeva P 2016 Nano Lett. 16 1345
11 Dutz S, Clement J H, Eberbeck D, Gelbrich T, Hergt R, M\"uller R, Wotschadlo J and Zeisberger M 2009 J. Magn. Magn. Mater. 321 1501
12 Lee J H, Jang J T, Choi J, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotechnol. 6 418
13 He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R and Zeng H 2018 Small 14 1800135
14 Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K and Tang P 2020 R. Soc. Open Sci. 7 191139
15 Wu L, Jubert P, Berman D, Imaino W I, Nelson A, Zhu H, Zhang S and Sun S 2014 Nano Lett. 14 3395
16 Ding H L, Zhang Y X, Wang S, Xu J M, Xu S C and Li G H 2012 Chem. Mater. 24 4572
17 Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G 2004 J. Am. Chem. Soc. 126 273
18 Webers S, Hess M, Landers J, Schmidt A M and Wende H 2020 ACS Appl. Polym. Mater. 2 2676
19 Lavorato G C, Das R, Xing Y, Robles J, Litterst F J, Baggio-Saitovitch E, Phan M H and Srikanth H 2020 ACS Appl. Nano Mater. 3 1755
20 Muro-Cruces J, Roca A G, L\'opez-Ortega A, Fantechi E, del-Pozo-Bueno D, Estrad\'e S, Peir\'o F, Sep\'ulveda B, Pineider F, Sangregorio C and Nogues J 2019 ACS Nano 13 7716
21 Guillaud C 1951 J. Phys. Rad. 12 239
22 Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370
23 Wu L, Mendoza-Garcia A, Li Q and Sun S 2016 Chem. Rev. 116 10473
24 Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L M, Gougeon M, Chaudret B and Respaud M 2011 Adv. Funct. Mater. 21 4573
25 Hergt R, Hiergeist R, Zeisberger M, Gl\"ockl G, Weitschies W, Ramirez L P, Hilger I and Kaiser A W 2004 J. Magn. Magn. Mater. 280 358
26 Wang X, Gu H and Yang Z 2005 J. Magn. Magn. Mater. 293 334
27 Dutz S and Hergt R 2013 Int. J. Hyperthermia 29 790
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[6] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[9] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[10] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[11] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[12] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[13] Magnetic anisotropy in 5d transition metal-porphyrin molecules
Yan-Wen Zhang(张岩文), Gui-Xian Ge(葛桂贤), Hai-Bin Sun(孙海斌), Jue-Ming Yang(杨觉明), Hong-Xia Yan(闫红霞), Long Zhou(周龙), Jian-Guo Wan(万建国), and Guang-Hou Wang(王广厚). Chin. Phys. B, 2021, 30(4): 047501.
[14] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[15] Magnetic phase diagram of single-layer CrBr3
Wei Jiang(江伟), Yue-Fei Hou(侯跃飞), Shujing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(12): 127501.
No Suggested Reading articles found!