CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles |
Xiang Yu(俞翔)†, Li-Chen Wang(王利晨)†, Zheng-Rui Li(李峥睿)†, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉)‡ |
1 Department of Physics, Capital Normal University, Beijing 100048, China |
|
|
Abstract High quality Zn0.5CoxFe2.5-xO4 (x = 0, 0.05, 0.1, 0.15) serial magnetic nanoparticles with single cubic structures were prepared by the modified thermal decomposition method, and Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles were prepared by surface modification of SiO2. The magnetic anisotropy of the sample increases with the increase of the doping amount of Co2+. When the doping amount is 0.1, the sample shows the transition from superparamagnetism to ferrimagnetism at room temperature. In the Zn0.5CoxFe2.5-xO4/SiO2 serial samples, the maximum value of specific loss power (SLP) with 1974 W/g metal can also be found at doping amount of x = 0.1. The composite nanoparticles are expected to be an excellent candidate for clinical magnetic hyperthermia.
|
Received: 25 June 2020
Revised: 29 September 2020
Accepted manuscript online: 31 October 2020
|
PACS:
|
62.23.St
|
(Complex nanostructures, including patterned or assembled structures)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
76.60.Es
|
(Relaxation effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51771124, 51571146, and 51701130). |
Corresponding Authors:
†These authors contributed equally to this work. ‡Corresponding author. E-mail: shulihe@cnu.edu.cn
|
Cite this article:
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉) Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles 2021 Chin. Phys. B 30 036201
|
1 Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao L, Hou Y, Wu Z, Du Y, Fan H, Tian J and Liang X 2019 ACS Nano 13 8811 2 Guisasola E, As\'ín L, Beola L, de la Fuente J M, Baeza A and Vallet-Reg\'í M 2018 ACS Appl. Mater. Interfaces 10 12518 3 Tay Z W, Chandrasekharan P, Chiu-Lam A, Hensley D W, Dhavalikar R, Zhou X Y, Yu E Y, Goodwill P W, Zheng B, Rinaldi C and Conolly S M 2018 ACS Nano 12 3699 4 Wang B, Chan K F, Yu J, Wang Q, Yang L, Chiu P W Y and Zhang L 2018 Adv. Funct. Mater. 28 1705701 5 Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q and Zhu X 2018 J. Control. Release 272 145 6 Albarqi H A, Wong L H, Schumann C, Sabei F Y, Korzun T, Li X, Hansen M N, Dhagat P, Moses A S, Taratula O and Taratula O 2019 ACS Nano 13 6383 7 Wu H, Liu L, Song L, Ma M, Gu N and Zhang Y 2019 ACS Nano 13 14013 8 Zhao L Y, Liu J Y, Ouyang W W, Li D Y, Li L, Li L Y and Tang J T 2013 Chin. Phys. B 22 108104 9 Derfus A M, von Maltzahn G, Harris T J, Duza T, Vecchio K S, Ruoslahti E and Bhatia S N 2007 Adv. Mater. 19 3932 10 Chen R, Christiansen M G, Sourakov A, Mohr A, Matsumoto Y, Okada S, Jasanoff A and Anikeeva P 2016 Nano Lett. 16 1345 11 Dutz S, Clement J H, Eberbeck D, Gelbrich T, Hergt R, M\"uller R, Wotschadlo J and Zeisberger M 2009 J. Magn. Magn. Mater. 321 1501 12 Lee J H, Jang J T, Choi J, Moon S H, Noh S H, Kim J W, Kim J G, Kim I S, Park K I and Cheon J 2011 Nat. Nanotechnol. 6 418 13 He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R and Zeng H 2018 Small 14 1800135 14 Wang R, Liu J, Liu Y, Zhong R, Yu X, Liu Q, Zhang L, Lv C, Mao K and Tang P 2020 R. Soc. Open Sci. 7 191139 15 Wu L, Jubert P, Berman D, Imaino W I, Nelson A, Zhu H, Zhang S and Sun S 2014 Nano Lett. 14 3395 16 Ding H L, Zhang Y X, Wang S, Xu J M, Xu S C and Li G H 2012 Chem. Mater. 24 4572 17 Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X and Li G 2004 J. Am. Chem. Soc. 126 273 18 Webers S, Hess M, Landers J, Schmidt A M and Wende H 2020 ACS Appl. Polym. Mater. 2 2676 19 Lavorato G C, Das R, Xing Y, Robles J, Litterst F J, Baggio-Saitovitch E, Phan M H and Srikanth H 2020 ACS Appl. Nano Mater. 3 1755 20 Muro-Cruces J, Roca A G, L\'opez-Ortega A, Fantechi E, del-Pozo-Bueno D, Estrad\'e S, Peir\'o F, Sep\'ulveda B, Pineider F, Sangregorio C and Nogues J 2019 ACS Nano 13 7716 21 Guillaud C 1951 J. Phys. Rad. 12 239 22 Rosensweig R E 2002 J. Magn. Magn. Mater. 252 370 23 Wu L, Mendoza-Garcia A, Li Q and Sun S 2016 Chem. Rev. 116 10473 24 Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L M, Gougeon M, Chaudret B and Respaud M 2011 Adv. Funct. Mater. 21 4573 25 Hergt R, Hiergeist R, Zeisberger M, Gl\"ockl G, Weitschies W, Ramirez L P, Hilger I and Kaiser A W 2004 J. Magn. Magn. Mater. 280 358 26 Wang X, Gu H and Yang Z 2005 J. Magn. Magn. Mater. 293 334 27 Dutz S and Hergt R 2013 Int. J. Hyperthermia 29 790 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|