INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures |
Rui-Rui Cui(崔瑞瑞)1, Jun Zhang(张俊)2, Zi-Jiang Luo(罗子江)1, Xiang Guo(郭祥)1, Zhao Ding(丁召)1, and Chao-Yong Deng(邓朝勇)1,† |
1 Power Semiconductor Device Reliability Center of the Ministry of Education, Department of Electronic Science, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; 2 College of Computer and Information Engineering, Guizhou University of Commerce, Guiyang 550014, China |
|
|
Abstract The β -Ga2O3 films are prepared on polished Al2O3 (0001) substrates by pulsed laser deposition at different oxygen partial pressures. The influence of oxygen partial pressure on crystal structure, surface morphology, thickness, optical properties, and photoluminescence properties are studied by x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), spectrophotometer, and spectrofluorometer. The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure, the full width at half maximum (FWHM) and grain size increase. With the increase of oxygen pressure, the thickness of the films first increases and then decreases. The room-temperature UV-visible (UV-Vis) absorption spectra show that the bandgap of the β -Ga2O3 film increases from 4.76 eV to 4.91 eV as oxygen pressure decreasing. Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm (∼ 4.0 eV), 360 nm (∼ 3.44 eV), 445 nm (∼ 2.79 eV), and 467 nm (∼ 2.66 eV), respectively. In addition, the total photoluminescence intensity decreases with oxygen pressure increasing, and it is found that the two UV bands are related to self-trapped holes (STHs) at O1 sites and between two O2-s sites, respectively, and the two blue bands originate from V Ga 2- at Ga1 tetrahedral sites. The photoluminescence mechanism of the films is also discussed. These results will lay a foundation for investigating the Ga2O3 film-based electronic devices.
|
Received: 24 August 2020
Revised: 21 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.15.Fg
|
(Pulsed laser ablation deposition)
|
|
81.10.Pq
|
(Growth in vacuum)
|
|
Fund: Project supported by the Guizhou Provincial Science and Technology Planning Project, China (Grant No. 2018-5781), the National Natural Science Foundation of China (Grant No. 51762010), the Guizhou Provincial Science and Technology Foundation, China (Grant Nos. 2020-1Y021 and 2020-1Y271), and the Guizhou Provincial High-level Innovative Talents, China (Grant No. 2018-4006). |
Corresponding Authors:
†Corresponding author. E-mail: cydeng@gzu.edu.cn
|
Cite this article:
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇) Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures 2021 Chin. Phys. B 30 028505
|
1 Zhang J Y, Shi J L, Qi D C, Chen L and Zhang K H L 2020 APL Mater. 8 020906 2 Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Tech. 31 034001 3 Rath P, Ummethala S, Nebel C and Pernice W H P 2015 Phys. Status Solidi (a) 212 2385 4 Nikolaev V I, Maslovc V, Stepanov S I, Pechnikov A I, Krymov V, Nikitin I P, Guzilova L I, Bougrov V E and Romanov A E 2017 J. Cryst. Growth 457 132 5 Yu X W, Cui H Y, Zhu M D, Xia Z L and Sai Q L 2019 Chin. Phys. B 28 077801 6 Hoshikawa K, Ohba E, Kobayashi T, Yanagisawa J, Miyagawa C and Nakamura Y 2016 J. Cryst. Growth 447 36 7 Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringe S A and Rajan S 2019 Appl. Phys. Lett. 115 152106 8 Yang X K, Du X J, He L N, Wang D, Zhao C C, Liu J, Ma J and Xiao H D 2020 J. Mater. Sci. 55 8231 9 Rafique S, Han L, Tadjer M J, Freitas J A, Mahadik N A and Zhao H P 2016 Appl. Phys. Lett. 108 182105 10 Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phy. B 28 028501 11 Shi Q, Wang Q R, Zhang D, Wang Q L, Li S H, Wang W J, Fan Q L and Zhang J Y 2019 J. Lumin. 206 53 12 Mazeina L, Picard Y N, Maximenko S I, Perkins F K, Glaser E R, Twigg M E, Freitas J A, Jr. and Prokes S M 2009 Cryst. Growth Des. 9 4471 13 Wu Z P, Bai G X, Qu Y Y, Guo D Y, Li L H, Li P G, Hao J H and Tang W H 2016 Appl. Phys. Lett. 108 211903 14 Vu T K, Lee D U and Kim E K 2019 J. Alloys Compd. 806 874 15 Liu H, Xu C X, Pan X H and Ye Z Z 2020 J. Electron. Mater. 49 4544 16 Berencén Y, Xie Y, Wang M, Prucnal S, Rebohle L and Zhou S Q 2019 Semicond. Sci. Technol. 34 035001 17 Feng Q, Li F G, Dai B, Jia Z T, Xie W L, Xu T, Lu X L, Tao X T, Zhang J C and Hao Y 2015 Appl. Surf. Sci. 359 847 18 Jangir R, Ganguli T, Porwal S, Tiwari P, Rai S K, Bhaumik I, Kukreja L M, Gupta P K and Deb S K 2013 J. Appl. Phys. 114 074309 19 Wang L2016 Scientist 004 163 20 Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K and Zhu D L 2018 J. Alloys Compd. 747 869 21 Lu Y M, Li C, Chen X H, Han S, Cao P J, Jia F, Zeng Y X, Liu X K, Xu W Y, Liu W J and Zhu D L 2019 Chin. Phys. B 28 018504 22 Zhang F B, Li H O,Guo Q X 2018 J. Electron. Mater. 47 6635 23 Tak B R, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A K, Nagarajan S and Singh R 2019 Appl. Surf. Sci. 465 973 24 Guo D Y, Li P G, Chen Z W, Wu Z P and Tang W H 2019 Acta Phys. Sin. 68 078501 (in Chinese) 25 Kumar S S, Rubio E J, Noor-A-Alam M, Martinez G, Manandhar S, Shutthanandan V, Thevuthasan S and Ramana C V 2013 J. Phys. Chem. C 117 4194 26 Guo L, Shen X, Zhu G and Chen K 2011 Sens. Actuators B Chem. 155 752 27 Knei\ss M, Hassa A, Splith D, Sturm C, Wenckstern H, Schultz T, Koch N, Lorenz M and Grundmann M 2019 APL Mater. 7 022516 28 Kim H, Horwitz J S, Pique A, Gilmore C M and Chrisey D B 1999 Appl. Phys. A 69 S447 29 Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 013504 30 Wu Z P, Bai G X, Hu Q R, Guo D Y, Sun C L, Ji L Y, Lei M, Li L H, Li P G, Hao J H and Tang W H 2015 Appl. Phys. Lett. 106 171910 31 Frodason Y K, Johansen K M, Vines and Varley J B 2020 J. Appl. Phys. 127 075701 32 Jiang J L, Zhang J and Song Z C 2020 J. Lumin. 221 117048 33 Mi W, Luan C N, Li Z, Zhao C S, Feng X J and Ma J 2013 Opt. Mater. 35 2624 34 Harwing T and Kellendouk F J. 1978 Solid State Chem. 24 255 35 Vasilotasiv V I, Zakharko Y M and Prim Y I1988 Ukr. Fiz. Zh. 33 1320 36 Ho Q D, Frauenheim T and De\'ak P 2018 Phys. Rev. B 97 115163 37 Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910 38 Binet L and Gourier D 1988 J. Phys. Chem. Solids 59 1241 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|