Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028504    DOI: 10.1088/1674-1056/abc152
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers

Yong Li(李勇)1, Xiao-Ming Li(李晓明)1, Rui-Ting Hao(郝瑞亭)1,†, Jie Guo(郭杰)1, Yu Zhuang(庄玉)1, Su-Ning Cui(崔素宁)2,3, Guo-Shuai Wei(魏国帅)1, Xiao-Le Ma(马晓乐)1, Guo-Wei Wang(王国伟)2,3,‡, Ying-Qiang Xu(徐应强)2,3, Zhi-Chuan Niu(牛智川)2,3, and Yao Wang(王耀)4
1 School of Energy and Environment Science, Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology of the Ministry of Education, Yunnan Normal University, Kunming 650092, China; 2 Key Laboratory for SLs and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 4 National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Abstract  A series of InSb thin films were grown on GaAs substrates by molecular beam epitaxy (MBE). GaSb/AlInSb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer, so as to reduce the system defects. At the same time, the influence of different interface structures of AlInSb on the surface morphology of buffer layer is explored. The propagation mechanism of defects with the growth of buffer layer is compared and analyzed. The relationship between the quality of InSb thin films and the structure of buffer layer is summarized. Finally, the growth of high quality InSb thin films is realized.
Keywords:  compound buffers      AlInSb/GaSb      defect inhibition      InSb      molecular beam epitaxy (MBE)  
Received:  19 July 2020      Revised:  29 August 2020      Accepted manuscript online:  15 October 2020
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.55.-a (Thin film structure and morphology)  
  68.65.Cd (Superlattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774130, 11474248, 61790581, and 51973070), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20105303120002), and the National Key Technology Research and Development Program of China (Grant No. 2018YFA0209101).
Corresponding Authors:  Corresponding author. E-mail: ruitinghao@semi.ac.cn Corresponding author. E-mail: wangguowei@semi.ac.cn   

Cite this article: 

Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀) Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers 2021 Chin. Phys. B 30 028504

1 Zhang T, Clowes S K, Debnath M, et al. 2004 Appl. Phys. Lett. 84 4463
2 Kimukin I, Biyikli N and Ozbay E 2003 J. Appl. Phys. 94 5414
3 Kimukin I, Biyikli N, Kartaloglu T, Aytur O and Ozbay E 2004 Selec. Top. Quantum Electron. 10 766
4 Rogalski A 1989 Prog. Quantum Electron. 13 191
5 Rogalski A 2003 Prog. Quantum Electron. 27 59
6 Cunningham R W and Gruber J B 1970 J. Appl. Phys. 41 1804
7 Se-Hwan P, Han S K, Hee-Sung S, et al. 2011 J. Korean Phys. Soc. 58 1577
8 Shi Y L2013 [J]. Infrared Technology 35 1 (in Chinese)
9 Debnath M C, Zhang T, Roberts C, et al. 2004 J. Crystal Growth 267 17
10 Wu S D, Guo L W, Li Z H, et al. 2005 J. Crystal Growth 277 21
11 Mori M, Tsubosaki Y, Tambo T, et al.1996 Appl. Surf. Sci. 104 563
12 Ivanov S V, Boudza A A, Kutt R N, et al. 1995 J. Crystal Growth 156 191
13 Zhang T, Clowes S K, Debnath M, et al. 2004 Appl. Phys. Lett. 84 4463
14 Weng X, Rudawski N G, Wang P T, Goldman R S, Partin D L and Heremans J 2005 J. Appl. Phys. 97 043713
15 Sato T, Akabori M and Yamada S 2004 Physica E 21 615
16 Liu W K 1996 J. Vac. Sci. Technol. B 14 2339
17 Philip K, Zipora C, Ami Z, et al. 2004 Proc. SPIE 5406 222
18 Shang L T, Liu M, Zhou P, et al. 2014 Laser Infrared 44 1115 (in Chinese)
19 Klin O, Klipstein P C, Jacobsohn E, et al. 2006 J. Vac. Sci. Technol. B 24 1607
20 Philip K, Daniel A, Michael B E, et al. 2013 Infrared Physics & Technology 59 172
21 Li Y, Li X M, Hao R T, et al. 2020 Opt. Quantum Electron. 52 138
22 Shi, Y, Gosselink D, Gharavi K, et al. 2017 J. Crystal Growth 477 7
23 Jacob P, Sizemore M F and Doherty2008 AIChE Annual Meeting
24 Shang L T, Han G, Liu M, et al. 2020 [J]. Laser Infrared 50 192 (in Chinese)
[1] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[2] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[3] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[4] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[5] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[6] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[7] Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001)
Zhao-Hong Mo(莫钊洪), Chao Lu(路超), Yi Liu(刘毅), Wei Feng(冯卫), Yun Zhang(张云), Wen Zhang(张文), Shi-Yong Tan(谭世勇), Hong-Jun Zhang(张宏俊), Chun-Yu Guo(郭春煜), Xiao-Dong Wang(汪小冬), Liang Wang(王亮), Rui-Zhu Yang(杨蕊竹), Zhong-Guo Ren(任忠国), Xie-Gang Zhu(朱燮刚), Zhong-Hua Xiong(熊忠华), Qi An(安琪), Xin-Chun Lai(赖新春). Chin. Phys. B, 2018, 27(6): 067403.
[8] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[9] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[10] A bistable, self-latching inverter by the monolithic integration of resonant tunnelling diode and high electron mobility transistor
Ma Long(马龙), Huang Ying-Long(黄应龙), Zhang Yang(张杨), Yang Fu-Hua(杨富华), and Wang Liang-Chen(王良臣). Chin. Phys. B, 2006, 15(10): 2422-2426.
[11] Optical properties and structure of Sb-rich AgInSbTe phase change thin films
Zhang Guang-Jun (张广军), Gu Dong-Hong (顾冬红), Gan Fu-Xi (干福熹). Chin. Phys. B, 2005, 14(1): 218-222.
[12] Atomic hydrogen induced step bunching and fabrication of quantum wire arrays on GaAs (311)A substrate by molecular beam epitaxy
Zhou Da-Yong (周大勇), Lan Qing (澜清), Kong Yun-Chuan (孔云川), Miao Zhen-Hua (苗振华), Feng Song-Lin (封松林), Niu Zhi-Chuan (牛智川). Chin. Phys. B, 2003, 12(2): 218-221.
No Suggested Reading articles found!