Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028103    DOI: 10.1088/1674-1056/abc168
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions

Jia-Xue You(游家学)1,†, Yun-Han Zhang(张运涵)2, Zhi-Jun Wang(王志军)2, Jin-Cheng Wang(王锦程)2, and Sheng-Zhong Liu(刘生忠)1
1 Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Laboratory for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China; 2 State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Heat transfer is the foundation of freezing colloidal suspensions and a key factor for the interface movement. However, how the thermal conductivity of particles affects freezing microstructural evolution remains unknown. Here in this work, a mathematical model is built up to investigate thermal interactions among a growing particle layer, pulling speeds, and the freezing interface under a thermal gradient. Experiments are conducted to confirm the tendency predictions of the model. With the increase of pulling speeds, the drifting distance of the freezing interface increases and the time to finish drifting decreases. When the thermal conductivity of particles (k p) is smaller than that of the surrounding (k w), the freezing interface tends to go forward to the warm side. Contrarily, the freezing interface tends to go back to the cold side when the thermal conductivity of particles is larger than that of the surrounding (α =k p/k w >1). It originates from the shape of the local freezing interface: convex (α <1) or concave (α >1). These morphological changes in the local interface modify the premelting drag force F f. When α <1, F f decreases and the freezing morphology tends to be the frozen fringe. When α >1, F f increases and the freezing morphologies tend to be ice spears. These understandings of how the thermal conductivity of particles affect microstructural evolution may optimize the production of freeze-casting materials and their structural-functional properties.
Keywords:  solidification      colloidal suspensions      heat transfer      microstructural evolution  
Received:  26 August 2020      Revised:  09 September 2020      Accepted manuscript online:  15 October 2020
PACS:  81.30.Fb (Solidification)  
  82.70.Dd (Colloids)  
  02.60.Cb (Numerical simulation; solution of equations)  
  47.20.Hw (Morphological instability; phase changes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB1106003, 2017YFA0204800, and 2016YFA0202403), the National Natural Science Foundation of China (Grant No. 51901190), the China Postdoctoral Science Foundation (Grant No. 2020M673336), and the Peak Experience Program (2018) of Northwestern Polytechnical University, China.
Corresponding Authors:  Corresponding author. E-mail: jiaxueyou@snnu.edu.cn   

Cite this article: 

Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠) Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions 2021 Chin. Phys. B 30 028103

1 Zheng T, Li J J, Wang L L, Wang Z J and Wang J C 2019 Int. J. Heat Mass Transfer 133 986
2 Deville S 2018 Scr. Mater. 147 119
3 Nazir H, Batool M, Bolivar Osorio F J, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Inamuddin and Kannan A M 2019 Int. J. Heat Mass Transfer 129 491
4 Liu T, Wang Q, Yuan Y, Wang K and Li G 2018 Chin. Phys. B 27 118103
5 You J X, Wang J C, Wang L L, Wang Z J, Li J J and Lin X 2016 Chin. Phys. B 25 128202
6 Cheng Q, Huang C and Tomsia A P 2017 Adv. Mater. 29 1703155
7 Scotti K L, Kearney L G, Burns J, Ocana M, Duros L, Shelhamer A and Dunand D C 2019 J. Eur. Ceram. Soc. 39 3180
8 You J, Wang J, Wang L, Wang Z, Li J, Lin X and Zhu Y 2019 Langmuir 35 10446
9 Zheng Y, Wu M, Karimi-Sibaki E, Kharicha A and Ludwig A 2018 Int. J. Heat Mass Transfer 122 939
10 Glicksman M E 2010 Principles of solidification: an introduction to modern casting and crystal growth concepts (Springer Science & Business Media)
11 You J, Wang Z and Worster MG 2018 Acta Mater. 157 288
12 Fan L and Khodadadi J M 2012 J. Heat Trans. 134 092301
13 Mahdi J M and Nsofor E C 2016 Appl. Therm. Eng. 108 596
14 Liu L, Su D, Tang Y and Fang G 2016 Renew. Sust. Energ. Rev. 62 305
15 El Hasadi Y M F and Khodadadi J M 2013 Int. J. Heat Mass Transfer 67 202
16 Fan L and Khodadadi J M 2011 Renew. Sust. Energ. Rev. 15 24
17 El Hasadi Y M F and Khodadadi J M 2015 J. Heat Trans. 137 072301
18 You J, Wang J, Wang L, Wang Z, Wang Z, Li J and Lin X 2017 Colloids and Surfaces A 531 93
19 You J, Wang L, Wang Z, Li J, Wang J, Lin X and Huang W 2016 Sci. Rep. 6 28434
20 Anderson A M and Worster M G 2012 Langmuir 28 16512
21 Saint-Michel B, Georgelin M, Deville S and Pocheau A 2017 Langmuir 33 5617
22 Shangguan D, Ahuja S and Stefanescu D M 1992 Metall. Mater. Trans. A 23 669
23 Stefanescu D M, Juretzko F R, Catalina A, Dhindaw B, Sen S and Curreri P A 1998 Metall. Mater. Trans. A 29 1697
24 You J, Wang L, Wang Z, Li J, Wang J, Lin X and Huang W 2015 Rev. Sci. Instrum. 86 084901
25 Mota F, Bergeon N, Tourret D, Karma A, Trivedi R and Billia B 2015 Acta Mater. 85 362
26 Zhou S-Q and Ni R 2008 Appl. Phys. Lett. 92 093123
27 Yu W and Choi S U S 2003 J. Nanopart. Res. 5 167
28 Lerat A 1985 AIAA Journal 23 33
29 You J, Wang J, Wang L, Wang Z, Li J and Lin X 2018 Colloids and Surfaces A 553 681
30 Style R W, Peppin S S L, Cocks A C F and Wettlaufer J S 2011 Phys. Rev. E 84 041402
31 Rempel A W, Wettlaufer J and Worster M 2004 J. Fluid Mech. 498 227
32 Rempel A W and Worster M G 2001 J. Cryst. Growth 223 420
33 Kao J C T, Golovin A A and Davis S H 2009 J. Fluid Mech. 625 299
34 Wettlaufer J S and Worster M G 2006 Ann. Rev. Fluid Mech. 38 427
35 Patterson J P, Xu Y, Moradi M-A, Sommerdijk N A J M and Friedrich H 2017 Acc. Chem. Res. 50 1495
36 van Dijk M A, Lippitz M and Orrit M 2005 Acc. Chem. Res. 38 594
37 Shaker M, Birgersson E and Mujumdar A S 2014 Int. J. Therm. Sci. 84 260
38 Rempel A W, Wettlaufer J S and Worster M G 2001 Phys. Rev. Lett. 87 088501
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[4] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[5] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[6] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[7] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[8] Effect of tellurium (Te4+) irradiation on microstructure and associated irradiation-induced hardening
Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Guanhong Lei(雷冠虹), Ondrej Muránsky, Tao Wei, and Mihail Ionescu. Chin. Phys. B, 2021, 30(5): 056108.
[9] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[10] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[11] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[12] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[13] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[14] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[15] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
No Suggested Reading articles found!