|
|
Quantifying entanglement in terms of an operational way |
Deng-Hui Yu(于登辉)1 and Chang-Shui Yu(于长水)1,2,† |
1 School of Physics, Dalian University of Technology, Dalian 116024, China; 2 DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract We establish entanglement monotones in terms of an operational approach, which is closely connected with the state conversion from pure states to the objective state by the local operations and classical communications. It is shown that any good entanglement quantifier defined on pure states can induce an entanglement monotone for all density matrices. Particularly, we show that our entanglement monotone is the maximal one among all those having the same form for pure states. In some special cases, our proposed entanglement monotones turn to be equivalent to the convex roof construction, which hence gain an operational meaning. Some examples are given to demonstrate different cases.
|
Received: 15 August 2020
Revised: 14 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775040, 12011530014 and 11375036) and the Fundamental Research Funds for the Central Universities.China (Grant No. DUT20LAB203). |
Corresponding Authors:
†Corresponding author. E-mail: ycs@dlut.edu.cn
|
Cite this article:
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水) Quantifying entanglement in terms of an operational way 2021 Chin. Phys. B 30 020302
|
1 Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 2 Plenio M B and Virmani S 2007 Quantum. Inf. Comput. 7 1 3 Bennett C H and DiVincenzo D P 2000 Nature 404 247 4 Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 1-33 5 Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656 6 Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 7 Bennett C H and Brassard G 1984 Theor. Comput. Sci. 560 7 8 Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 9 Zhang W and Han Z F 2019 Acta Phys. Sin. 68 070301 (in Chinese) 10 Chang L W, Zhang Y Q, Tian X X, Qian Y H and Zheng S H 2020 Chin. Phys. B 29 010304 11 Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601 12 Song T T, Zhang J, Gao F, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 1333 13 Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001 14 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 16 Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 17 Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401 18 Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899 19 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 20 Zurek W 2000 Ann. Phys. (Germany) 9 855 21 Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502 22 Yadin B, Ma J, Girolami D, Gu M and Vedral V 2016 Phys. Rev. X 6 041028 23 Yu D H, Zhang L Q and Yu C S 2020 Phys. Rev. A 101 062114 24 Guo Q Q, Chen X Y and Wang Y Y 2014 Chin. Phys. B 23 050309 25 Geetha P J, Sudha and K S Mallesh 2017 Chin. Phys. B 26 050301 26 Guo M L, Li B, Wang Z X and Fei S M 2020 Chin. Phys. B 29 070304 27 Duan J, Luo Y and Li Y M 2018 Chin. Phys. B 27 110305 28 Jiang N Q, Wang Y J, Zheng Y Z and Cai G C 2008 Chin. Phys. Lett. 25 1943 29 Audenaert K, Verstraete F and De Moor B 2001 Phys. Rev. A 64 052304 30 Mintert F, Carvalho A R, Ku\'s M and Buchleitner A 2005 Phys. Rep. 415 207 31 Peres A 1996 Phys. Rev. Lett. 77 1413 32 Wootters W K 2001 Quantum Info. Comput. 1 27C4 33 Wootters W K 1998 Phys. Rev. Lett. 80 2245 34 Uhlmann A 2000 Phys. Rev. A 62 032307 35 Mintert F, Ku\'s M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902 36 Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 37 Horodecki P and Horodecki R 2001 Quantum Info. Comput. 1 45C75 38 Rains E M 1999 Phys. Rev. A 60 173 39 Hayden P M, Horodecki M and Terhal B M 2001 J. Phys. A: Math. Gen. 34 6891 40 Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 41 Uhlmann A 1998 Open Systems & Information Dynamics 5 209 42 Vidal G 2000 J. Mod. Opt. 47 355 43 Plenio M B 2005 Phys. Rev. Lett. 95 090503 44 Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901 45 Jonathan D and Plenio M B 1999 Phys. Rev. Lett. 83 1455 46 Bhatia R1997 Matrix Analysis(New York: Springer) 47 Marshall A W and Olkin I1979 Inequalities: Theory of Majorization and Its Applications (New York: Academic Press) 48 Nielsen M A 1999 Phys. Rev. Lett. 83 436 49 Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 50 Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|