|
|
Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations |
Yu-Hang Yin(尹宇航)1, Si-Jia Chen(陈思佳)1, and Xing Lü(吕兴)1,2,† |
1 Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China; 2 Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, China\vglue3pt |
|
|
Abstract We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations. Based on the Hirota bilinear method and the test function method, we construct the exact solutions to the extended equations including lump solutions, lump-kink solutions, and two other types of interaction solutions, by solving the under-determined nonlinear system of algebraic equations for associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.
|
Received: 31 May 2020
Revised: 12 July 2020
Accepted manuscript online: 28 July 2020
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
05.30.Jp
|
(Boson systems)
|
|
02.70.Wz
|
(Symbolic computation (computer algebra))
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2018RC031), the National Natural Science Foundation of China (Grant No. 71971015), the Program of the Co-Construction with Beijing Municipal Commission of Education of China (Grant Nos. B19H100010 and B18H100040), and the Open Fund of IPOC (BUPT). |
Corresponding Authors:
†Corresponding author. E-mail: xlv@bjtu.edu.cn, xinglv655@aliyun.com
|
Cite this article:
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴) Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations 2020 Chin. Phys. B 29 120502
|
[1] Xu H N, Ruan W Y, Zhang Y and Lü X Appl. Math. Lett. 99 105976 DOI: 10.1016/j.aml.2019.07.0072020 [2] Li L, Yu F J and Duan C N Appl. Math. Lett. 110 106584 DOI: 10.1016/j.aml.2020.1065842020 [3] Chen S J, Yin Y H, Ma W X and Lü X Anal. Math. Phys. 9 2329 DOI: 10.1007/s13324-019-00338-22019 [4] Lü X and Ma W X Nonlinear Dyn. 85 1217 DOI: 10.1007/s11071-016-2755-82016 [5] Hua Y F, Guo B L, Ma W X and Lü X 2019 Appl. Math. Model. 74 185 DOI: 10.1016/j.apm.2019.04.044 [6] Yin Y H, Ma W X, Liu J G and Lü X 2018 Comput. Math. Appl. 76 127 DOI: 10.1016/j.camwa.2018.06.020 [7] Lü X, Ma W X, Yu J, Lin F H and Khalique C M Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-62015 [8] Yu F J Appl. Math. Lett. 92 108 DOI: 10.1016/j.aml.2019.01.0102019 [9] Yu F J and Fan R Appl. Math. Lett. 103 106209 DOI: 10.1016/j.aml.2020.1062092020 [10] Chen S J, Ma W X and Lü X Commun. Nonlinear Sci. Numer. Simul. 83 105135 DOI: 10.1016/j.cnsns.2019.1051352020 [11] Hirota R2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) [12] Xia J W, Zhao Y W and Lü X Commun. Nonlinear Sci. Numer. Simul. 90 105260 DOI: 10.1016/j.cnsns.2020.1052602020 [13] Gao L N, Zi Y Y, Yin Y H, Ma W X and Lü X Nonlinear Dyn. 89 2233 DOI: 10.1007/s11071-017-3581-32017 [14] Lü X, Ma W X, Yu J and Khalique C M Commun. Nonlinear Sci. Numer. Simul. 31 40 DOI: 10.1016/j.cnsns.2015.07.0072016 [15] Lü X, Ma W X, Zhou Y and Khalique C M Comput. Math. Appl. 71 1560 DOI: 10.1016/j.camwa.2016.02.0172016 [16] Lü X and Lin F Commun. Nonlinear Sci. Numer. Simul. 32 241 DOI: 10.1016/j.cnsns.2015.08.0082016 [17] Lü X 2015 Nonlinear Dyn. 81 239 DOI: 10.1007/s11071-015-1985-5 [18] Lü, Ma W X, Yu J, Lin F H and Khalique C M 2015 Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-6 [19] Lü, Lin F H and Qi F H 2015 Appl. Math. Model. 39 3221 DOI: 10.1016/j.apm.2014.10.046 [20] Lü X, Ma W X, Chen S T and Khalique C M Appl. Math. Lett. 58 13 DOI: 10.1016/j.aml.2015.12.0192016 [21] Xu Z H, Chen H L, Jiang M R, Dai Z D and Chen W Nonlinear Dyn. 78 461 DOI: 10.1007/s11071-014-1452-82014 [22] Ma W X and Abdeljabbar A Appl. Math. Lett. 25 1500 DOI: 10.1016/j.aml.2012.01.0032012 [23] Zhang Y and Ma W X 2015 Appl. Math. Com. 256 252 DOI: 10.1016/j.amc.2015.01.027 [24] Zhang Y F and Ma W X 2015 Z. Naturforsch. 70a 263 DOI: 10.1515/zna-2014-0361 [25] Ma W X and Fan E G Comput. Math. Appl. 61 950 DOI: 10.1016/j.camwa.2010.12.0432011 [26] Gao L N, Zhao X Y, Zi Y Y, Yu J and Lü X Comput. Math. Appl. 72 1225 DOI: 10.1016/j.camwa.2016.06.0082016 [27] Ma W X, Zhang Y, Tang Y N and Tu J Y 2012 Appl. Math. Comput. 218 7174 DOI: 10.1016/j.amc.2011.12.085 [28] Ma W X, Qin Z Y and Lü X Nonlinear Dyn. 84 923 DOI: 10.1007/s11071-015-2539-62016 [29] Ma W X Phys. Lett. A 379 1975 DOI: 10.1016/j.physleta.2015.06.0612015 [30] Geng X G J. Phys. A: Math. Gen. 36 2289 DOI: 10.1088/0305-4470/36/9/3072003 [31] Zha Q L Phys. Lett. A 377 3021 DOI: 10.1016/j.physleta.2013.09.0232013 [32] Geng X G and Ma Y L Phys. Lett. A 369 285 DOI: 10.1016/j.physleta.2007.04.0992007 [33] Zha Q L and Li Z B Mod. Phys. Lett. B 23 2971 DOI: 10.1142/S02179849090210532009 [34] Wazwaz A M 2014 Cent. Eur. J. Eng. 4 352 https://doi.org/10.2478/s13531-013-0173-y [35] Liu N and Liu Y S Comput. Math. Appl. 71 1645 DOI: 10.1016/j.camwa.2016.03.0122016 [36] Zhang H Q and Ma W X Comput. Math. Appl. 73 2339 DOI: 10.1016/j.camwa.2017.03.0142017 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|