Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120502    DOI: 10.1088/1674-1056/aba9c4
GENERAL Prev   Next  

Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations

Yu-Hang Yin(尹宇航)1, Si-Jia Chen(陈思佳)1, and Xing Lü(吕兴)1,2,
1 Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China; 2 Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University, Beijing 100044, China\vglue3pt
Abstract  We focus on the localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations. Based on the Hirota bilinear method and the test function method, we construct the exact solutions to the extended equations including lump solutions, lump-kink solutions, and two other types of interaction solutions, by solving the under-determined nonlinear system of algebraic equations for associated parameters. Finally, analysis and graphical simulation are presented to show the dynamical characteristics of our solutions and the interaction behaviors are revealed.
Keywords:  Hirota bilinear method      test function method      lump solution      interaction solution      symbolic computation  
Received:  31 May 2020      Revised:  12 July 2020      Accepted manuscript online:  28 July 2020
PACS:  05.45.Yv (Solitons)  
  05.30.Jp (Boson systems)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2018RC031), the National Natural Science Foundation of China (Grant No. 71971015), the Program of the Co-Construction with Beijing Municipal Commission of Education of China (Grant Nos. B19H100010 and B18H100040), and the Open Fund of IPOC (BUPT).
Corresponding Authors:  Corresponding author. E-mail: xlv@bjtu.edu.cn, xinglv655@aliyun.com   

Cite this article: 

Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴) Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations 2020 Chin. Phys. B 29 120502

[1] Xu H N, Ruan W Y, Zhang Y and Lü X Appl. Math. Lett. 99 105976 DOI: 10.1016/j.aml.2019.07.0072020
[2] Li L, Yu F J and Duan C N Appl. Math. Lett. 110 106584 DOI: 10.1016/j.aml.2020.1065842020
[3] Chen S J, Yin Y H, Ma W X and Lü X Anal. Math. Phys. 9 2329 DOI: 10.1007/s13324-019-00338-22019
[4] Lü X and Ma W X Nonlinear Dyn. 85 1217 DOI: 10.1007/s11071-016-2755-82016
[5] Hua Y F, Guo B L, Ma W X and Lü X 2019 Appl. Math. Model. 74 185 DOI: 10.1016/j.apm.2019.04.044
[6] Yin Y H, Ma W X, Liu J G and Lü X 2018 Comput. Math. Appl. 76 127 DOI: 10.1016/j.camwa.2018.06.020
[7] Lü X, Ma W X, Yu J, Lin F H and Khalique C M Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-62015
[8] Yu F J Appl. Math. Lett. 92 108 DOI: 10.1016/j.aml.2019.01.0102019
[9] Yu F J and Fan R Appl. Math. Lett. 103 106209 DOI: 10.1016/j.aml.2020.1062092020
[10] Chen S J, Ma W X and Lü X Commun. Nonlinear Sci. Numer. Simul. 83 105135 DOI: 10.1016/j.cnsns.2019.1051352020
[11] Hirota R2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[12] Xia J W, Zhao Y W and Lü X Commun. Nonlinear Sci. Numer. Simul. 90 105260 DOI: 10.1016/j.cnsns.2020.1052602020
[13] Gao L N, Zi Y Y, Yin Y H, Ma W X and Lü X Nonlinear Dyn. 89 2233 DOI: 10.1007/s11071-017-3581-32017
[14] Lü X, Ma W X, Yu J and Khalique C M Commun. Nonlinear Sci. Numer. Simul. 31 40 DOI: 10.1016/j.cnsns.2015.07.0072016
[15] Lü X, Ma W X, Zhou Y and Khalique C M Comput. Math. Appl. 71 1560 DOI: 10.1016/j.camwa.2016.02.0172016
[16] Lü X and Lin F Commun. Nonlinear Sci. Numer. Simul. 32 241 DOI: 10.1016/j.cnsns.2015.08.0082016
[17] Lü X 2015 Nonlinear Dyn. 81 239 DOI: 10.1007/s11071-015-1985-5
[18] Lü, Ma W X, Yu J, Lin F H and Khalique C M 2015 Nonlinear Dyn. 82 1211 DOI: 10.1007/s11071-015-2227-6
[19] Lü, Lin F H and Qi F H 2015 Appl. Math. Model. 39 3221 DOI: 10.1016/j.apm.2014.10.046
[20] Lü X, Ma W X, Chen S T and Khalique C M Appl. Math. Lett. 58 13 DOI: 10.1016/j.aml.2015.12.0192016
[21] Xu Z H, Chen H L, Jiang M R, Dai Z D and Chen W Nonlinear Dyn. 78 461 DOI: 10.1007/s11071-014-1452-82014
[22] Ma W X and Abdeljabbar A Appl. Math. Lett. 25 1500 DOI: 10.1016/j.aml.2012.01.0032012
[23] Zhang Y and Ma W X 2015 Appl. Math. Com. 256 252 DOI: 10.1016/j.amc.2015.01.027
[24] Zhang Y F and Ma W X 2015 Z. Naturforsch. 70a 263 DOI: 10.1515/zna-2014-0361
[25] Ma W X and Fan E G Comput. Math. Appl. 61 950 DOI: 10.1016/j.camwa.2010.12.0432011
[26] Gao L N, Zhao X Y, Zi Y Y, Yu J and Lü X Comput. Math. Appl. 72 1225 DOI: 10.1016/j.camwa.2016.06.0082016
[27] Ma W X, Zhang Y, Tang Y N and Tu J Y 2012 Appl. Math. Comput. 218 7174 DOI: 10.1016/j.amc.2011.12.085
[28] Ma W X, Qin Z Y and Lü X Nonlinear Dyn. 84 923 DOI: 10.1007/s11071-015-2539-62016
[29] Ma W X Phys. Lett. A 379 1975 DOI: 10.1016/j.physleta.2015.06.0612015
[30] Geng X G J. Phys. A: Math. Gen. 36 2289 DOI: 10.1088/0305-4470/36/9/3072003
[31] Zha Q L Phys. Lett. A 377 3021 DOI: 10.1016/j.physleta.2013.09.0232013
[32] Geng X G and Ma Y L Phys. Lett. A 369 285 DOI: 10.1016/j.physleta.2007.04.0992007
[33] Zha Q L and Li Z B Mod. Phys. Lett. B 23 2971 DOI: 10.1142/S02179849090210532009
[34] Wazwaz A M 2014 Cent. Eur. J. Eng. 4 352 https://doi.org/10.2478/s13531-013-0173-y
[35] Liu N and Liu Y S Comput. Math. Appl. 71 1645 DOI: 10.1016/j.camwa.2016.03.0122016
[36] Zhang H Q and Ma W X Comput. Math. Appl. 73 2339 DOI: 10.1016/j.camwa.2017.03.0142017
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[3] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[4] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[5] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[6] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[7] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[8] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[9] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
[10] Lump and interaction solutions to the (3+1)-dimensional Burgers equation
Jian Liu(刘健), Jian-Wen Wu(吴剑文). Chin. Phys. B, 2020, 29(3): 030201.
[11] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[12] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[13] Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions
Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青). Chin. Phys. B, 2019, 28(10): 100203.
[14] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[15] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
No Suggested Reading articles found!