Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020201    DOI: 10.1088/1674-1056/ab5eff
GENERAL   Next  

Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation

Ping Liu(刘萍)1, Jie Cheng(程杰)2, Bo Ren(任博)3, Jian-Rong Yang(杨建荣)4
1 School of Electronic and Information Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 528402, China;
2 School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 Institute of Nonlinear Science, Shaoxing University, Shaoxing 312000, China;
4 School of Physics and Electronic Information, Shangrao Normal University, Shangrao 334001, China
Abstract  The famous Kadomtsev-Petviashvili (KP) equation is a classical equation in soliton theory. A Bäcklund transformation between the KP equation and the Schwarzian KP equation is demonstrated by means of the truncated Painlevé expansion in this paper. One-parameter group transformations and one-parameter subgroup-invariant solutions for the extended KP equation are obtained. The consistent Riccati expansion (CRE) solvability of the KP equation is proved. Some interaction structures between soliton-cnoidal waves are obtained by CRE and several evolution graphs and density graphs are plotted.
Keywords:  Kadomtsev-Petviashvili (KP) equation      consistent Riccati expansion      symmetry      Bäcklund transformation      interaction solution  
Received:  29 July 2019      Revised:  18 November 2019      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.20.Hj (Classical groups)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775047,11775146,and 11865013) and the Science and Technology Project Foundation of Zhongshan City, China (Grant No. 2017B1016).
Corresponding Authors:  Ping Liu     E-mail:  liuping49@126.com

Cite this article: 

Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣) Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation 2020 Chin. Phys. B 29 020201

[1] Kadomtsev B B and Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[2] Ablowitz M J and Segur H 1979 J. Fluid Mech. 92 691
[3] Liu P and Lou S Y 2008 Chin. Phys. Lett. 25 3311
[4] Sato M 1981 RIMS Kokyuroku 439 30
[5] Sato M, Miwa T and Jimbo M 1977 Publ. RIMS, Kyoto Univ. 14 223
[6] Ma W X 2015 Phys. Lett. A 379 1975
[7] Ma W X 2019 J. Appl. Anal. Comput. 9 1319
[8] Zhao H Q and Ma W X 2017 Comput. Math. Appl. 74 1399
[9] Ma W X 2019 Front. Math. China 14 619
[10] Satsuma J 1976 J. Phys. Soc. Jpn. 40 286
[11] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[12] Xu T, Sun F W, Zhang Y and Li J 2014 Comput. Math. Math. Phys. 54 97
[13] Weiss J 1983 J. Math. Phys. 24 1405
[14] Matveev V B 1979 Lett. Math. Phys. 3 213
[15] Ma W X and zhang Y J 2018 Rev. Math. Phys. 30 1850003
[16] Ren Bo 2017 J. Korean Phys. Soc. 70 333
[17] Chen H H 1975 J. Math. Phys. 16 2382
[18] Gao X N, Lou S Y and Tang X Y 2013 J. High Energy Phys. 5 029
[19] Liu P, Zeng B Q, Yang J R and Ren B 2015 Chin. Phys. B 24 010202
[20] Liu X Z, Yu J, Lou Z M and Qian X M 2019 Chin. Phys. B 28 010201
[21] Liu P, Li B and Yang J R 2014 Cent. Eur. J. Phys. 12 541
[22] Lou S Y 2015 Studies in Applied Mathematics 134 372
[23] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298
[24] Guo B X and Lin J 2013 Int. J. Mod. Phys. B 30 1640013
[25] Guo B X, Gao Z J and Lin J 2016 Commun. Theor. Phys. 66 589
[26] Liu Y K and Li B 2016 Chin. J. Phys. 54 718
[27] Olver P 1986 Applications of Lie Group to Differential Equations (New York: Spring-Verlag)
[28] Liu P, Zeng B Q and Ren B 2015 Commun. Theor. Phys. 63 413
[29] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[30] Liu P and Li Z L 2013 Chin. Phys. B 22 050204
[31] Liu P, Wang Y X, Ren B and Li J H 2016 Commun. Theor. Phys. 66 595
[32] Hao X, Liu Y and Tang X 2017 Zeitschrift Für Naturforschung A 72 441
[33] Ma W X and Fuchssteiner B 1996 Int. J. Nonlinear Mech. 31 329
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[6] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[12] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!