Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 010502    DOI: 10.1088/1674-1056/abaed3
GENERAL Prev   Next  

Interaction properties of solitons for a couple of nonlinear evolution equations

Syed Tahir Raza Rizvi1,†, Ishrat Bibi1, Muhammad Younis2,‡, and Ahmet Bekir3,§
1 Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan; 2 Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan; 3 Neighbourhood of Akcaglan, Imarli Street Number 28/4, 26030, Eskisehir, Turkey
Abstract  We study one-and two-soliton solutions for the Cahn-Allen (CA) equation and the Brethorton equation. The CA equation has broad spectrum of applications especially in anti-phase boundary motion and it is used in phase-field models. While the Brethorton equation is a model for dispersive wave systems, it is used to find the resonant nonlinear interaction among three linear modes. We use the Hirota bilinear method to obtain one-and two-soliton solutions to the CA equation and the Brethorton equation.
Keywords:  Hirota bilinear method      soliton interaction      evolution equations  
Received:  15 July 2020      Revised:  08 August 2020      Accepted manuscript online:  13 August 2020
PACS:  05.45.Yv (Solitons)  
  94.05.Fg (Solitons and solitary waves)  
Corresponding Authors:  Corresponding author. E-mail: srizvi@cuilahore.edu.pk Corresponding author. E-mail: younis.pu@gmail.com §Corresponding author. E-mail: bekirahmet@gmail.com   

Cite this article: 

Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir Interaction properties of solitons for a couple of nonlinear evolution equations 2021 Chin. Phys. B 30 010502

1 Rui X H U, Chao J C and Yong C 2015 Chin. Phys. Lett. 32 70201
2 Jun F X, Peng Z, Sheng L, et al.2012 Acta Phys. Sin. 61 134207 (in Chinese)
3 Jun F X, Peng Z, Sheng L, et al.2008 Acta Phys. Sin. 57 2529 (in Chinese)
4 Gang Y L, Long W S and Cheng H W 2007 Acta Phys. Sin. 56 2229 (in Chinese)
5 Qun Y X and Qi G 2004 Acta Phys. Sin. 53 3020 (in Chinese)
6 Yuan F, He S J and Cheng Y 2019 Chin. Phys. B 28 100202
7 Huang L L, Qiao J Z and Chen Y 2018 Chin. Phys. B 27 020201
8 Song Q C, Xiao M D and Zhu N Z 2017 Chin. Phys. B 26 100204
9 Xia R Y, Xin P X and Zhang L S 2017 Chin. Phys. B 26 030202
10 Shakeel M, Iqbal M A, Hassan Q M and Ayub K 2020 Ind. J. Phys. 94 885
11 Shakeel M, Mohyuddin S T and Iqbal M A 2018 Comput. Math. Appl. 76 799
12 Shakeel M, Iqbal M A and Mohyuddin S T 2018 J. Biol. Sys. 26 207
13 Wazwaz A M 2006 Chaos, Solitons & Fractals 28 1005
14 Liu W, Zhang Y, Triki H, et al.2019 Nonlin. Dyn. 95 557
15 Yang C, Liu W, Zhou Q, et al.2019 Nonlin. Dyn. 95 369
16 Bulut H, Atas S S and Baskonus H M 2016 Cogent Phys. 3 1240886
17 Ma W X, Huang T and Zhang Y 2010 Phys. Scr. 82 065003
18 Ma W X and Lee J H 2009 Chaos, Solitons & Fractals 42 1356
19 Zhang H and Ma W X 2014 Appl. Math. Comput. 230 509
20 Ma W X and Fuchssteiner B 1996 Int. J. Non-Linear Mech. 31 329
21 Yu W, Zhou Q, Mirzazadeh M, Liu W and Biswas A 2019 J. Adv. Res. 15 69
22 Liu X, Triki H, Zhou Q, et al.2019 Nonlin. Dyn. 95 143
23 Wazwaz A M 2008 Appl. Math. Comput. 201 489
24 Wazwaz A M 2012 Appl. Math. Lett. 25 2354
25 Yokus A and Bulut H 2019 Int. J. Optim. Control: Theor. & Appl. 9 18
26 Liu W, Yang C, Liu M, et al.2017 Phys. Rev. E 96 042201
27 Tascan F and Bekir A 2009 Appl. Math. Comput. 207 279
28 Triki H, Yildirim A, Hayat T, Aldossar O M and Biswas A2012 Proc. Rom. Acad. Ser. A 13 103
29 Oguz C, Yildirim A and Meherrem S 2012 Commun. Numer. Anal. 11 362
[1] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[2] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[3] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[4] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[5] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[6] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[7] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[8] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[9] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[10] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[11] The Wronskian technique for nonlinear evolution equations
Jian-Jun Cheng(成建军) and Hong-Qing Zhang(张鸿庆). Chin. Phys. B, 2016, 25(1): 010506.
[12] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[13] Application of radial basis functions to evolution equations arising in image segmentation
Li Shu-Ling (李淑玲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(2): 028702.
[14] Superposition solitons in two-component Bose-Einstein condensates
Wang Xiao-Min (王晓敏), Li Qiu-Yan (李秋艳), Li Zai-Dong (李再东). Chin. Phys. B, 2013, 22(5): 050311.
[15] Ultrashort optical solitons in the dispersion-decreasing fibers
Dai Chao-Qing (戴朝卿), Chen Jun-Lang (陈均朗 ). Chin. Phys. B, 2012, 21(8): 080507.
No Suggested Reading articles found!