Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 040501    DOI: 10.1088/1674-1056/ab75d7
GENERAL Prev   Next  

Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation

Haifeng Wang(王海峰), Yufeng Zhang(张玉峰)
School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
Abstract  We study a simplified (3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method. Then, a more general form of lump solution is constructed, which contains more arbitrary autocephalous parameters. In addition, a lumpoff solution is also derived based on the general lump solutions and a stripe soliton. Furthermore, we figure out instanton/rogue wave solutions via introducing two stripe solitons. Finally, one can better illustrate these propagation phenomena of these solutions by analyzing images.
Keywords:  dimensionally reduced Hirota bilinear equation      more general form of lump solution      lumpoff solution      rogue wave solution  
Received:  02 January 2020      Revised:  28 January 2020      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11971475).
Corresponding Authors:  Yufeng Zhang     E-mail:  zhangyfcumt@163.com

Cite this article: 

Haifeng Wang(王海峰), Yufeng Zhang(张玉峰) Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation 2020 Chin. Phys. B 29 040501

[1] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[2] Müller P, Garrett C and Osborne A 2005 Oceanography 18 66
[3] Ma W X 2015 Phys. Lett. A 379 1975
[4] Ma W X and Zhou Y 2018 J. Differ. Equ. 264 2633
[5] Lü X, Chen S T and Ma W X 2016 Nonlinear Dyn. 86 523
[6] Yang J Y and Ma W X 2016 Int. J. Mod. Phys. B 30 1640028
[7] Yang J Y, Ma W X and Qin Z Y 2018 Anal. Math. Phys. 8 427
[8] Wang H 2018 Appl. Math. Lett. 85 27
[9] Lü X, Tian B and Qi F H 2012 Nonlinear Anal-Real 13 1130
[10] Manakov S V, Zakharov V E, Bordag L A, Its A R and Matveev V B 1977 Phys. Lett. A 63 205
[11] Ma W X 2018 J. Geom. Phys. 133 10
[12] Ma W X, Yong X and Zhang H Q 2018 Comput. Math. Appl. 75 289
[13] Ma W X 2013 Rep. Math. Phys. 72 41
[14] Ma W X 2019 Mod. Phys. Lett. B 33 1950457
[15] Ma W X 2019 J. Appl. Anal. Comput. 9 1319
[16] Ma W X 2019 Front. Math. Chin. 14 619
[17] Wang H F and Zhang Y F 2019 Symmetry 11 1365
[18] Zhang Y, Liu Y P and Tang X Y 2018 Comput. Math. Appl. 76 592
[19] Zhang Y F and Ma W X 2015 Z. Naturforsch. A 70 263
[20] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[21] Yang J Y and Ma W X 2017 Nonlinear Dyn. 89 1539
[22] Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503
[23] Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V and Tarakanov V P 2017 Phys. Rev. Lett. 119 034801
[24] Moslem W M, Shukla P K and Eliasson B 2011 Europhys. Lett. 96 25002
[25] Höhmann R, Kuhl U, Stöckmann H J, Kaplan L and Heller E J 2010 Phys. Rev. Lett. 104 093901
[26] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496
[27] Osman M S and Machado J A T 2018 Nonlinear Dyn. 93 733
[28] Sun Y, Tian B, Xie X Y, Chai J and Yin H M 2018 Wave. Random Complex 28 544
[29] Villarroel J, Prada J and Estévez P G 2009 Stud. Appl. Math. 122 395
[30] Liu J G, Yang X J, Cheng M H, Fenf Y Y and Wang Y D 2019 Comput. Math. Appl. 78 1947
[31] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[32] Jia M and Lou S Y 2018 arXiv:1803.01730v1[nlin.SI]
[33] Wu P X and Zhang Y F 2019 Phys. Lett. A 383 1755
[34] Mao J J, Tian S F, Zou L, Zhang T T and Yan X J 2019 Nonlinear Dyn. 95 3005
[35] Peng W Q, Tian S F and Zhang T T 2018 Phys. Lett. A 382 2701
[36] Zheng P F and Jia M 2018 Chin. Phys. B 27 120201
[37] Gao L N, Zhao X Y, Zi Y Y, Yu J and Lü X 2016 Comput. Math. Appl. 72 1225
[38] Lü X and Ma W X 2016 Nonlinear Dyn. 85 1217
[39] Hirota R 1971 Phys. Rev. Lett. 27 1192
[40] Hirota R 2004 Direct Method Soliton Theory (Cambridge: Cambridge University Press) p. 155
[1] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[2] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[3] Soliton and rogue wave solutions of two-component nonlinear Schrödinger equation coupled to the Boussinesq equation
Cai-Qin Song(宋彩芹), Dong-Mei Xiao(肖冬梅), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2017, 26(10): 100204.
No Suggested Reading articles found!