Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 120201    DOI: 10.1088/1674-1056/27/12/120201
GENERAL   Next  

A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation

Panfeng Zheng(郑攀峰)1, Man Jia(贾曼)1,2
1 Physics Department, Ningbo University, Ningbo 315211, China;
2 Ningbo Collaborative Innovation Center of Nonlinear Hazard System of Ocean and Atmosphere, Ningbo University, Ningbo 315211, China
Abstract  

In this manuscript, a reduced (3+1)-dimensional nonlinear evolution equation is studied. We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory, then explore a lump solution to the special case for z=x. Furthermore, a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions. By cutting the lump by the induced soliton(s), lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.

Keywords:  a reduced (3+1)-dimensional nonlinear evolution equation      more general form of lump solution      soliton induced by lump      lumpoff and instanton/rogue wave solutions  
Received:  16 August 2018      Revised:  19 October 2018      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11675084 and 11435005), the Fund from the Educational Commission of Zhejiang Province, China (Grant No. Y201737177), Ningbo Natural Science Foundation (Grant No. 2015A610159), and the K C Wong Magna Fund in Ningbo University.

Corresponding Authors:  Man Jia     E-mail:  jiaman@nbu.edu.cn

Cite this article: 

Panfeng Zheng(郑攀峰), Man Jia(贾曼) A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation 2018 Chin. Phys. B 27 120201

[1] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[2] Höhmann R, Kuhl U, Stöckmann H J, Kaplan L and Heller E J 2010 Phys. Rev. Lett. 104 093901
[3] Montina A, Bortolozzo U, Residori S and Arecchi F T 2009 Phys. Rev. Lett. 103 173901
[4] Panwar A, Rizvi H and Ryu C M 2013 Phys. Plasmas 20 082101
[5] Moslem W M, Shukla P K and Eliasson B 2011 Europhys. Lett. 96 25002
[6] Stenflo L and Marklund M 2010 J. Plasma Phys. 76 293
[7] Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F 2013 Phys. Rep. 528 47
[8] Müller P, Garrett C and Osborne A 2005 Oceanography 18 66
[9] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B-Fluids 22 603
[10] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[11] Bludov Y V, Konotop V V and Akhmediev N 2010 Eur. Phys. J.-Spec. Top. 185 169
[12] Yan Z 2011 Soc. Polit. 18 441
[13] Yan Z 2010 Commun. Theor. Phys. 54 947
[14] Ginzburg N S, Rozental R M, Sergeev A S, Fedotov A E, Zotova I V and Tarakanov V P 2017 Phys. Rev. Lett. 119 034801
[15] Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503
[16] Onorato M, Waseda T, Toffoli A, Cavaleri L, Gramstad O, Janssen P A E M, Kinoshita T, Monbaliu J, Mori N, Osborne A R, Serio M, Stansberg C T, Tamura H and Trulsen K 2009 Phys. Rev. Lett. 102 114502
[17] Dudley J M, Genty G and Eggleton B J 2008 Opt. Express 16 3644
[18] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P and McClintock P V E 2008 Phys. Rev. Lett. 101 065303
[19] Akhmediev N and Pelinovsky E 2010 Eur. Phys. J.-Spec. Top. 185 1
[20] Ma H C and Deng A P 2016 Commun. Theor. Phys. 65 546
[21] Tang Y, Tao S and Guan Q 2016 Comput. Math. Appl. 72 2334
[22] Wang C 2016 Nonlinear Dyn. 84 697
[23] Zhang X and Chen Y 2017 Commun. Nonlinear Sci. Numer. Simul. 52 24
[24] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[25] Yang J Y and Ma W X 2017 Nonlinear Dyn. 89 1539
[26] Zhang H Q and Ma W X 2016 Nonlinear Dyn. 87 2305
[27] Zhang X and Chen Y 2018 Nonlinear Dyn. 93 2169
[28] Zhang X, Chen Y and Tang X Y 2018 Comput. Math. Appl. 76 1938
[29] Huang L L, Qiao Z J and Chen Y 2018 Chin. Phys. B 27 020201
[30] Xu T, Chen Y and Lin J 2017 Chin. Phys. B 26 120201
[31] Frenkel E, Losev A and Nekrasov N 2011 J. Inst. Math. Jussieu 10 463
[32] Frenkel E, Losev A and Nekrasov N 2007 Nucl. Phys. B-Proc. Suppl. 171 215
[33] Geng X 2003 J. Phys. A: Math. Gen. 36 2289
[34] Chen M D, Li X, Wang Y and Li B 2017 Commun. Theor. Phys. 67 595
[35] Zhang Y, Liu Y P and Tang X Y 2018 Comput. Math. Appl. 76 592
[36] Zhaqilao Z and Li B 2009 Mod. Phys. Lett. B 23 2971
[37] Shi B Y and Zhang Y 2017 Commun. Nonlinear Sci. Numer. Simul. 44 120
[38] Gilson C, Lambert F, Nimmo J and Willox R 1996 Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 452 223
[39] Lambert F and Springael J 2008 Acta Appl. Math. 102 147
[40] Fan E G 2011 Phys. Lett. A 375 493
[41] Hirota R 1971 Phys. Rev. Lett. 27 1192
[42] Wang Y, Chen M D, Li X and Li B 2017 Zeitschrift Für Naturforschung A 72 419
[1] Lump, lumpoff and predictable rogue wave solutions to a dimensionally reduced Hirota bilinear equation
Haifeng Wang(王海峰), Yufeng Zhang(张玉峰). Chin. Phys. B, 2020, 29(4): 040501.
No Suggested Reading articles found!