Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120503    DOI: 10.1088/1674-1056/abc15b
GENERAL Prev   Next  

Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity

Jianjin Wang(汪剑津)1, Yong Zhang(张勇)2, and Daxing Xiong(熊大兴)3,
1 Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, China; 2 Department of Physics, Xiamen University, Xiamen 361005, China; 3 School of Science, Jimei University, Xiamen 361021, China
Abstract  We address the issue of how disorder together with nonlinearity affect energy relaxation in the lattice φ4 system. The absence of nonlinearity leads such a model to only supporting fully localized Anderson modes whose energies will not relax. However, through exploring the time decay behavior of each Anderson mode's energy-energy correlation, we find that adding nonlinearity, three distinct relaxation details can occur. (i) A small amount of nonlinearity causes a rapid exponential decay of the correlation for all modes. (ii) In the intermediate value of nonlinearity, this exponential decay will turn to power-law with a large scaling exponent close to -1. (iii) Finally, all Anderson modes' energies decay in a power-law manner but with a quite small exponent, indicating a slow long-time tail decay. Obviously, the last two relaxation details support a new localization mechanism. As an application, we show that these are relevant to the nonmonotonous nonlinearity dependence of thermal conductivity. Our results thus provide new information for understanding the combined effects of disorder and nonlinearity on energy relaxation.
Keywords:  classical transport      localized modes      Anderson localization  
Received:  11 August 2020      Revised:  22 September 2020      Accepted manuscript online:  15 October 2020
PACS:  05.60.Cd (Classical transport)  
  63.20.Pw (Localized modes)  
  66.70.-f (Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847015, 11975190, 11575046, and 11964012), the Natural Science Foundation of Fujian Province, China (Grant No. 2017J06002), and the Start-up Fund from Jiangxi Science and Technology Normal University (Grant No. 2017BSD002).
Corresponding Authors:  Corresponding author. E-mail: xmuxdx@163.com   

Cite this article: 

Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴) Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity 2020 Chin. Phys. B 29 120503

[1] Shepelyansky D L Phys. Rev. Lett. 70 1787 DOI: 10.1103/PhysRevLett.70.17871993
[2] Pikovsky A S and Shepelyansky D L Phys. Rev. Lett. 100 094101 DOI: 10.1103/PhysRevLett.100.0941012008
[3] Chen S D, Zhang Y, Wang J and Zhao H Sci. China-Phys. Mech. Astron. 56 1466 DOI: 10.1007/s11433-013-5163-92013
[4] Kopidakis G, Komineas S, Flach S and Aubry S Phys. Rev. Lett. 100 084103 DOI: 10.1103/PhysRevLett.100.0841032008
[5] Hou Q W and Cao B Y Chin. Phys. B 21 014401 DOI: 10.1088/1674-1056/21/1/0144012012
[6] Flach S, Krimer D O and Skokos C Phys. Rev. Lett. 102 024101 DOI: 10.1103/PhysRevLett.102.0241012009
[7] Xu R F, Han K and Li H P Chin. Phys. B 27 026801 DOI: 10.1088/1674-1056/27/2/0268012018
[8] Skokos C, Gkolias I and Flach S Phys. Rev. Lett. 111 064101 DOI: 10.1103/PhysRevLett.111.0641012013
[9] Guo P, Pan Y K, Li L L and Tang B Chin. Phys. B 26 073101 DOI: 10.1088/1674-1056/26/7/0731012017
[10] Senyange B, Many Manda B and Skokos C Phys. Rev. E 98 052229 DOI: 10.1103/PhysRevE.98.0522292018
[11] Zhang Z J, Tang C M, Kang J and Tong P Q Chin. Phys. B 26 100505 DOI: 10.1088/1674-1056/26/10/1005052017
[12] Qi K, Tang M, Cui A X and Fu Y Chin. Phys. Lett. 29 050505 DOI: 10.1088/0256-307X/29/5/0505052012
[13] Schwartz T, Bartal G, Fishman S and Segev M Nature 446 52 DOI: 10.1038/nature056232007
[14] Zhan H F and Gu Y T Chin. Phys. B 27 038103 DOI: 10.1088/1674-1056/27/3/0381032018
[15] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M Nature 453 895 DOI: 10.1038/nature070712008
[16] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y Phys. Rev. Lett. 100 013906 DOI: 10.1103/PhysRevLett.100.0139062008
[17] Zhou K K, Xu N and Xie G F Chin. Phys. B 27 026501 DOI: 10.1088/1674-1056/27/2/0265012018
[18] Lucioni E, Deissler B, Tanzi L, Roati G, Zaccanti M, Modugno M, Larcher M, Dalfovo F, Inguscio M and Modugno G Phys. Rev. Lett. 106 230403 DOI: 10.1103/PhysRevLett.106.2304032011
[19] Anderson P W Phys. Rev. 109 1492 DOI: 10.1103/PhysRev.109.14921958
[20] Li B, Zhao H and Hu B Phys. Rev. Lett. 86 63 DOI: 10.1103/PhysRevLett.86.632001
[21] Dhar A and Lebowitz J L Phys. Rev. Lett. 100 134301 DOI: 10.1103/PhysRevLett.100.1343012008
[22] Wang J, Zhang Y and Zhao H Phys. Rev. E 93 032144 DOI: 10.1103/PhysRevE.93.0321442016
[23] Matsuda H and Ishii K Prog. Theor. Phys. Suppl. 45 56 DOI: 10.1143/PTPS.45.561970
[24] Sales M O, Albuquerue S S and de Moura F A B F 2012 J. Phys.: Condens. Matter 24 495401 DOI: 10.1088/0953-8984/24/49/495401
[25] Thouless D J J. Phys. C 6 L49 DOI: 10.1088/0022-3719/6/3/0021973
[26] Wang J, He D, Zhang Y, Wang J and Zhao H Phys. Rev. E 92 032138 DOI: 10.1103/PhysRevE.92.0321382015
[27] Lepri S, Livi R and Politi A Phys. Rep. 377 1 DOI: 10.1016/S0370-1573(02)00558-62003
[28] Green M S J. Chem. Phys. 22 398 DOI: 10.1063/1.17400821954
[29] Kubo R, Yokota M and Nakajima S J. Phys. Soc. Jpn. 12 1203 DOI: 10.1143/JPSJ.12.12031957
[30] Flach S, Ivanchenko M and Li N Pramana-J. Phys. 77 1007 DOI: 10.1007/s12043-011-0186-02011
[31] Xiong D Phys. Rev. E 95 042127 DOI: 10.1103/PhysRevE.95.0421272017
[32] Xiong D, Saadatmand D and Dmitriev S V Phys. Rev. E 96 042109 DOI: 10.1103/PhysRevE.96.0421092017
[33] Kopidakis G and Aubry S Phys. Rev. Lett. 84 3236 DOI: 10.1103/PhysRevLett.84.32362000
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[4] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[5] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[6] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[7] Phase diagram of a family of one-dimensional nearest-neighbor tight-binding models with an exact mobility edge
Long-Yan Gong(巩龙延), Xiao-Xin Zhao(赵小新). Chin. Phys. B, 2017, 26(7): 077202.
[8] Uncertainties of clock and shift operators for an electron in one-dimensional nonuniform lattice systems
Long-Yan Gong(巩龙延), You-Gen Ding(丁友根), Yong-Qiang Deng(邓永强). Chin. Phys. B, 2017, 26(11): 117201.
[9] Disordered quantum walks in two-dimensional lattices
Zhang Rong(张融), Xu Yun-Qiu(徐韵秋), Xue Peng(薛鹏). Chin. Phys. B, 2015, 24(1): 010303.
[10] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
[11] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan(黄渊), Nie Lin(聂林), Yu De-Liang(余德良), Liu Chun-Hua(刘春华), Feng Zhen(冯震), and Duan Xu-Ru(段旭如). Chin. Phys. B, 2011, 20(5): 055201.
[12] Properties of plasma radiation during discharges with improved confinement on HL-2A Tokamak
Gao Jin-Ming(高金明), Liu Yi(刘仪), Li Wei(李伟), Cui Zheng-Ying(崔正英), Zhou Yan(周艳), Huang Yuan(黄渊), and Ji Xiao-Quan(季小全). Chin. Phys. B, 2010, 19(11): 115201.
[13] State vector evolution localized over the edges of a square tight-binding lattice
He Liang-Ming(何良明) and Shi Duan-Wen (石端文). Chin. Phys. B, 2009, 18(3): 1214-1220.
[14] Bright and dark small amplitude nonlinear localized modes in a quantum one-dimensional Klein--Gordon chain
Liu Yang(刘洋) and Tang Yi(唐翌). Chin. Phys. B, 2008, 17(10): 3841-3846.
[15] MOVING NONLINEAR LOCALIZED MODES FOR ONE-DIMENSIONAL KLEIN-GORDON DIATOMIC LATTICE
Zhou Guang-hui (周光辉), Pan Liu-xian (潘留仙), Yan Jia-ren (颜家壬). Chin. Phys. B, 2001, 10(8): 689-693.
No Suggested Reading articles found!