|
|
Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity |
Jianjin Wang(汪剑津)1, Yong Zhang(张勇)2, and Daxing Xiong(熊大兴)3,† |
1 Department of Physics, Jiangxi Science and Technology Normal University, Nanchang 330013, China; 2 Department of Physics, Xiamen University, Xiamen 361005, China; 3 School of Science, Jimei University, Xiamen 361021, China |
|
|
Abstract We address the issue of how disorder together with nonlinearity affect energy relaxation in the lattice φ4 system. The absence of nonlinearity leads such a model to only supporting fully localized Anderson modes whose energies will not relax. However, through exploring the time decay behavior of each Anderson mode's energy-energy correlation, we find that adding nonlinearity, three distinct relaxation details can occur. (i) A small amount of nonlinearity causes a rapid exponential decay of the correlation for all modes. (ii) In the intermediate value of nonlinearity, this exponential decay will turn to power-law with a large scaling exponent close to -1. (iii) Finally, all Anderson modes' energies decay in a power-law manner but with a quite small exponent, indicating a slow long-time tail decay. Obviously, the last two relaxation details support a new localization mechanism. As an application, we show that these are relevant to the nonmonotonous nonlinearity dependence of thermal conductivity. Our results thus provide new information for understanding the combined effects of disorder and nonlinearity on energy relaxation.
|
Received: 11 August 2020
Revised: 22 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
05.60.Cd
|
(Classical transport)
|
|
63.20.Pw
|
(Localized modes)
|
|
66.70.-f
|
(Nonelectronic thermal conduction and heat-pulse propagation in solids;thermal waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11847015, 11975190, 11575046, and 11964012), the Natural Science Foundation of Fujian Province, China (Grant No. 2017J06002), and the Start-up Fund from Jiangxi Science and Technology Normal University (Grant No. 2017BSD002). |
Corresponding Authors:
†Corresponding author. E-mail: xmuxdx@163.com
|
Cite this article:
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴) Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity 2020 Chin. Phys. B 29 120503
|
[1] Shepelyansky D L Phys. Rev. Lett. 70 1787 DOI: 10.1103/PhysRevLett.70.17871993 [2] Pikovsky A S and Shepelyansky D L Phys. Rev. Lett. 100 094101 DOI: 10.1103/PhysRevLett.100.0941012008 [3] Chen S D, Zhang Y, Wang J and Zhao H Sci. China-Phys. Mech. Astron. 56 1466 DOI: 10.1007/s11433-013-5163-92013 [4] Kopidakis G, Komineas S, Flach S and Aubry S Phys. Rev. Lett. 100 084103 DOI: 10.1103/PhysRevLett.100.0841032008 [5] Hou Q W and Cao B Y Chin. Phys. B 21 014401 DOI: 10.1088/1674-1056/21/1/0144012012 [6] Flach S, Krimer D O and Skokos C Phys. Rev. Lett. 102 024101 DOI: 10.1103/PhysRevLett.102.0241012009 [7] Xu R F, Han K and Li H P Chin. Phys. B 27 026801 DOI: 10.1088/1674-1056/27/2/0268012018 [8] Skokos C, Gkolias I and Flach S Phys. Rev. Lett. 111 064101 DOI: 10.1103/PhysRevLett.111.0641012013 [9] Guo P, Pan Y K, Li L L and Tang B Chin. Phys. B 26 073101 DOI: 10.1088/1674-1056/26/7/0731012017 [10] Senyange B, Many Manda B and Skokos C Phys. Rev. E 98 052229 DOI: 10.1103/PhysRevE.98.0522292018 [11] Zhang Z J, Tang C M, Kang J and Tong P Q Chin. Phys. B 26 100505 DOI: 10.1088/1674-1056/26/10/1005052017 [12] Qi K, Tang M, Cui A X and Fu Y Chin. Phys. Lett. 29 050505 DOI: 10.1088/0256-307X/29/5/0505052012 [13] Schwartz T, Bartal G, Fishman S and Segev M Nature 446 52 DOI: 10.1038/nature056232007 [14] Zhan H F and Gu Y T Chin. Phys. B 27 038103 DOI: 10.1088/1674-1056/27/3/0381032018 [15] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M Nature 453 895 DOI: 10.1038/nature070712008 [16] Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y Phys. Rev. Lett. 100 013906 DOI: 10.1103/PhysRevLett.100.0139062008 [17] Zhou K K, Xu N and Xie G F Chin. Phys. B 27 026501 DOI: 10.1088/1674-1056/27/2/0265012018 [18] Lucioni E, Deissler B, Tanzi L, Roati G, Zaccanti M, Modugno M, Larcher M, Dalfovo F, Inguscio M and Modugno G Phys. Rev. Lett. 106 230403 DOI: 10.1103/PhysRevLett.106.2304032011 [19] Anderson P W Phys. Rev. 109 1492 DOI: 10.1103/PhysRev.109.14921958 [20] Li B, Zhao H and Hu B Phys. Rev. Lett. 86 63 DOI: 10.1103/PhysRevLett.86.632001 [21] Dhar A and Lebowitz J L Phys. Rev. Lett. 100 134301 DOI: 10.1103/PhysRevLett.100.1343012008 [22] Wang J, Zhang Y and Zhao H Phys. Rev. E 93 032144 DOI: 10.1103/PhysRevE.93.0321442016 [23] Matsuda H and Ishii K Prog. Theor. Phys. Suppl. 45 56 DOI: 10.1143/PTPS.45.561970 [24] Sales M O, Albuquerue S S and de Moura F A B F 2012 J. Phys.: Condens. Matter 24 495401 DOI: 10.1088/0953-8984/24/49/495401 [25] Thouless D J J. Phys. C 6 L49 DOI: 10.1088/0022-3719/6/3/0021973 [26] Wang J, He D, Zhang Y, Wang J and Zhao H Phys. Rev. E 92 032138 DOI: 10.1103/PhysRevE.92.0321382015 [27] Lepri S, Livi R and Politi A Phys. Rep. 377 1 DOI: 10.1016/S0370-1573(02)00558-62003 [28] Green M S J. Chem. Phys. 22 398 DOI: 10.1063/1.17400821954 [29] Kubo R, Yokota M and Nakajima S J. Phys. Soc. Jpn. 12 1203 DOI: 10.1143/JPSJ.12.12031957 [30] Flach S, Ivanchenko M and Li N Pramana-J. Phys. 77 1007 DOI: 10.1007/s12043-011-0186-02011 [31] Xiong D Phys. Rev. E 95 042127 DOI: 10.1103/PhysRevE.95.0421272017 [32] Xiong D, Saadatmand D and Dmitriev S V Phys. Rev. E 96 042109 DOI: 10.1103/PhysRevE.96.0421092017 [33] Kopidakis G and Aubry S Phys. Rev. Lett. 84 3236 DOI: 10.1103/PhysRevLett.84.32362000 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|