Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 100203    DOI: 10.1088/1674-1056/ab3f20
GENERAL Prev   Next  

Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions

Xue-Ping Cheng(程雪苹)1,2, Wen-Xiu Ma(马文秀)3,4,5,6, Yun-Qing Yang(杨云青)1,2
1 Physics, Mathematics, and Information College of Zhejiang Ocean University, Zhoushan 316004, China;
2 Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan 316022, China;
3 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA;
4 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia;
5 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China;
6 International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
Abstract  Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions (or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.
Keywords:  lump-type solution      generalized (3+1)-dimensional Kadomtsev-Petviashvili equation      Hirota bilinear form      symbolic computation  
Received:  09 April 2019      Revised:  07 August 2019      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Wz (Symbolic computation (computer algebra))  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505154, 11605156, 11775146, and 11975204), the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LQ16A010003 and LY19A050003), the China Scholarship Council (Grant No. 201708330479), the Foundation for Doctoral Program of Zhejiang Ocean University (Grant No. Q1511), the Natural Science Foundation (Grant No. DMS-1664561), the Distinguished Professorships by Shanghai University of Electric Power (China), North-West University (South Africa), and King Abdulaziz University (Saudi Arabia).
Corresponding Authors:  Xue-Ping Cheng     E-mail:  chengxp2005@126.com

Cite this article: 

Xue-Ping Cheng(程雪苹), Wen-Xiu Ma(马文秀), Yun-Qing Yang(杨云青) Lump-type solutions of a generalized Kadomtsev-Petviashvili equation in (3+1)-dimensions 2019 Chin. Phys. B 28 100203

[30] Jimbo M and Miwa T 1983 Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 943
[1] Estévez P G, Díaz E, Domínguez-Adame F, Cerveró J M and Diez E 2016 Phys. Rev. E 93 062219
[31] Xu G Q 2006 Chaos, Solitons and Fractals 30 71
[2] Frantzeskakis D J, Horikis T P, Rodrigues A S, Kevrekidis P G, Carretero-González R and Cuevas-Maraver J 2018 Phys. Rev. E 98 022205
[32] Wazwaz A M 2012 Appl. Math. Lett. 25 1495
[3] Li X, Wang Y, Chen M D and Li B 2017 Adv. Math. Phys. 2017 1743789
[4] Berger K M and Milewski P A 2000 SIAM J. Appl. Math. 61 731
[33] Darvishi M and Najafi M 2011 Int. J. Math. Comput. Phys. Electr. Comput. Eng. 5 1097
[5] Ma H C, Ni K and Deng A P 2017 Thermal Science 21 1765
[34] Ma W X and Lee J H 2009 Chaos, Solitons and Fractals 42 1356
[6] Petviashvili V I and Pokhotelov O V 1989 Solitary waves in plasmas and in the atmosphere, Energoatomizdat, Moscow (in Russian) (1992 Engl. transl.: Gordon and Breach, Philadelphia)
[35] Ma W X, Abdeljabbar A and Asaad M G 2011 Appl. Math. Comput. 217 10016
[36] Ma W X and Abdeljabbar A 2012 Appl. Math. Lett. 25 1500
[7] Pelinovsky D E, Stepanyants Y A and Kivshar Yu S 1995 Phys. Rev. E 51 5016
[37] Wang X B, Tian S F, Feng L L, Yan H and Zhang T T 2017 Nonlinear Dyn. 88 2265
[8] Baronio F, Wabnitz S and Kodama Y 2016 Phys. Rev. Lett. 116 173901
[9] Mironov V A, Smirnov A I and Smirnov L A 2010 JETP 110 877
[38] Wazwaz A M 2012 Phys. Scr. 86 035007
[10] Xu Y X and Duan W S 2012 Chin. Phys. B 21 115202
[39] Abudiab M and Khalique C M 2013 Adv. Differ. Equ. 2013 221
[40] Huang Z R Tian B, Zhen H L, Jiang Y, Wang Y P and Sun Y 2015 Nonlinear Dyn. 80 1
[11] Potapov A I and Soldatov I N 1984 Akust. Zh. 30 819
[41] Zhao Z L and Han B 2019 Anal. Math. Phys. 9 119
[12] Gilson C R and Nimmo J J C 1990 Phys. Lett. A 147 472
[42] Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871
[13] Imai K 1997 Prog. Theor. Phys. 98 1013
[43] Wazwaz A M and El-Tantawy S A 2017 Nonlinear Dyn. 88 3017
[14] Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496
[44] Yu J P and Sun Y L 2017 Nonlinear Dyn. 90 2263
[15] Kaup D J 1981 J. Math. Phys. 22 1176
[45] Kaur L and Wazwaz A M 2018 Phys. Scr. 93 075203
[16] Ma W X 2015 Phys. Lett. A 379 1975
[46] Wazwaz A M 2011 Phys. Scr. 84 055006
[17] Zhao H Q and Ma W X 2017 Comput. Math. Appl. 74 1399
[47] Wazwaz A M and El-Tantawy S A 2016 Nonlinear Dyn. 84 1107
[18] Zhang J B and Ma W X 2017 Comput. Math. Appl. 74 591
[48] Hirota R 1971 Phys. Rev. Lett. 27 1192
[19] Yang J Y and Ma W X 2016 Int. J. Mod. Phys. B 30 1640028
[20] Yong X L, Ma W X, Huang Y H and Liu Y 2018 Comput. Math. Appl. 75 3414
[49] Hietarinta J 1991 “(2+1)-dimensional dromions and Hirota's bilinear method”, In Antoniou I and Lambert F J (eds) Solitons and Chaos, Research Reports in Physics, Springer, Berlin, Heidelberg
[21] Ma W X, Yong X L and Zhang H Q 2018 Comput. Math. Appl. 75 289
[50] Ma W X, You Y C 2004 Trans. Am. Math. Soc. 357 1753
[22] Yang J Y, Ma W X and Qin Z Y 2018 Anal. Math. Phys. 8 427
[51] Yue Y F, Huang L L and Chen Y 2018 Comput. Math. Appl. 75 2538
[23] Zhou Y, Manukure S and Ma W X 2019 Commun. Nonlinear Sci. Numer. Simulat. 68 56
[52] Yang J Y, Ma W X and Qin Z Y 2018 East Asian J. Appl. Math. 8 224
[24] Chen S T and Ma W X 2018 Front Math. China 13 525
[25] Manukure S, Zhou Y and Ma W X 2018 Comput. Math. Appl. 75 2414
[26] Chen S T and Ma W X 2018 Comput. Math. Appl. 76 1680
[27] Ma W X 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355
[28] Ma W X 2018 J. Geom. Phys. 133 10
[29] Zheng P F and Jia M 2018 Chin. Phys. B 27 120201
[30] Jimbo M and Miwa T 1983 Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 943
[31] Xu G Q 2006 Chaos, Solitons and Fractals 30 71
[32] Wazwaz A M 2012 Appl. Math. Lett. 25 1495
[33] Darvishi M and Najafi M 2011 Int. J. Math. Comput. Phys. Electr. Comput. Eng. 5 1097
[34] Ma W X and Lee J H 2009 Chaos, Solitons and Fractals 42 1356
[35] Ma W X, Abdeljabbar A and Asaad M G 2011 Appl. Math. Comput. 217 10016
[36] Ma W X and Abdeljabbar A 2012 Appl. Math. Lett. 25 1500
[37] Wang X B, Tian S F, Feng L L, Yan H and Zhang T T 2017 Nonlinear Dyn. 88 2265
[38] Wazwaz A M 2012 Phys. Scr. 86 035007
[39] Abudiab M and Khalique C M 2013 Adv. Differ. Equ. 2013 221
[40] Huang Z R Tian B, Zhen H L, Jiang Y, Wang Y P and Sun Y 2015 Nonlinear Dyn. 80 1
[41] Zhao Z L and Han B 2019 Anal. Math. Phys. 9 119
[42] Ma W X and Zhu Z N 2012 Appl. Math. Comput. 218 11871
[43] Wazwaz A M and El-Tantawy S A 2017 Nonlinear Dyn. 88 3017
[44] Yu J P and Sun Y L 2017 Nonlinear Dyn. 90 2263
[45] Kaur L and Wazwaz A M 2018 Phys. Scr. 93 075203
[46] Wazwaz A M 2011 Phys. Scr. 84 055006
[47] Wazwaz A M and El-Tantawy S A 2016 Nonlinear Dyn. 84 1107
[48] Hirota R 1971 Phys. Rev. Lett. 27 1192
[49] Hietarinta J 1991 “(2+1)-dimensional dromions and Hirota's bilinear method”, In Antoniou I and Lambert F J (eds) Solitons and Chaos, Research Reports in Physics, Springer, Berlin, Heidelberg
[50] Ma W X, You Y C 2004 Trans. Am. Math. Soc. 357 1753
[51] Yue Y F, Huang L L and Chen Y 2018 Comput. Math. Appl. 75 2538
[52] Yang J Y, Ma W X and Qin Z Y 2018 East Asian J. Appl. Math. 8 224
[1] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[2] Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions
Xu Gui-Qiong (徐桂琼). Chin. Phys. B, 2013, 22(5): 050203.
[3] Extended symmetry transformation of (3+1)-dimensional generalized nonlinear Schrödinger equation with variable coefficients
Jing Jian-Chun (荆建春), Li Biao (李彪). Chin. Phys. B, 2013, 22(1): 010303.
[4] Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation
Tang Ya-Ning(唐亚宁), Ma Wen-Xiu(马文秀), and Xu Wei(徐伟) . Chin. Phys. B, 2012, 21(7): 070212.
[5] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao(胡晓) and Li Biao(李彪). Chin. Phys. B, 2011, 20(5): 050315.
[6] Some exact solutions to the inhomogeneous higher-order nonlinear Schr?dinger equation by a direct method
Zhang Huan-Ping(张焕萍), Li Biao(李彪), and Chen Yong(陈勇). Chin. Phys. B, 2010, 19(6): 060302.
[7] The pth-order periodic solutions for a family of N-coupled nonlinear SchrOdingerequations
Liu Guan-Ting(刘官厅). Chin. Phys. B, 2006, 15(11): 2500-2505.
[8] New expansion algorithm of three Riccati equations and its applications in nonlinear mathematical physics equations
Zhi Hong-Yan (智红燕), Zhao Xue-Qin (赵雪芹), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2005, 14(7): 1296-1302.
[9] Periodic solutions of nonlinear Schrödinger type equations
Liu Guan-Ting (刘官厅), Fan Tian-You (范天佑). Chin. Phys. B, 2004, 13(6): 805-810.
[10] Travelling wave solutions for generalized symmetric regularized long-wave equations with high-order nonlinear terms
Chen Yong (陈勇), Li Biao (李彪). Chin. Phys. B, 2004, 13(3): 302-306.
[11] Using symbolic computation to construct travelling wave solutions to nonlinear partial differential equations
Li Wei (李伟), Xie Fu-Ding (谢福鼎). Chin. Phys. B, 2004, 13(10): 1639-1643.
[12] New solitary wave solutions for nonlinear evolution equations
Yao Ruo-Xia (姚若侠), Li Zhi-Bin (李志斌). Chin. Phys. B, 2002, 11(9): 864-868.
No Suggested Reading articles found!