|
|
General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation |
Peisen Yuan(袁培森)1, Jiaxin Qi(齐家馨)3, Ziliang Li(李子良)2, and Hongli An(安红利)3,† |
1 College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210095, China; 2 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; 3 College of Sciences, Nanjing Agricultural University, Nanjing 210095, China |
|
|
Abstract A special transformation is introduced and thereby leads to the N-soliton solution of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt (KDKK) equation. Then, by employing the long wave limit and imposing complex conjugate constraints to the related solitons, various localized interaction solutions are constructed, including the general M-lumps, T-breathers, and hybrid wave solutions. Dynamical behaviors of these solutions are investigated analytically and graphically. The solutions obtained are very helpful in studying the interaction phenomena of nonlinear localized waves. Therefore, we hope these results can provide some theoretical guidance to the experts in oceanography, atmospheric science, and weather forecasting.
|
Received: 20 October 2020
Revised: 22 November 2020
Accepted manuscript online: 02 December 2020
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775116) and the Jiangsu Qinglan High-Level Talent Project. |
Corresponding Authors:
†Corresponding author. E-mail: hongli_an@njau.edu.cn
|
Cite this article:
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利) General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation 2021 Chin. Phys. B 30 040503
|
1 Ablowitz M A and Clarkson P A 1991 Soliton, Nonlinear Evolution Equations and Inverse Scatting (NewYork: Cambridge University Press) 2 Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory (NewYork: Cambridge University Press) 3 Hirota R 2004 The Direct Method in Soliton Theory (NewYork: Cambridge University Press) 4 Hu X B 1993 J. Phys. A: Math. Gen. 26 L465 5 Cao C W, Wu Y T and Geng X G 1999 J. Math. Phys. 40 3948 6 Liu Q P and Manas M 2000 Phys. Lett. B 485 293 7 Ma W X and Fuchssteiner B 1996 Int. J. Nonlinear Mech. 31 329 8 Ma W X and You Y C 2005 Trans. Amer. Math. Soc. 357 1753 9 Lou S Y and Lu J Z 1996 J. Phys. A: Math. Gen. 29 4209 10 Fan E G 2000 Phys. Lett. A 277 212 11 Yan Z Y 2001 Phys. Lett. A 292 100 12 Chen Y and Wang Q 2006 J. Appl. Math. Comput. 177 396 13 Ma W X 2005 Nonlinear Analysis 63 e2461 14 Trogdon T and Deconinck B 2013 Appl. Math. Lett. 26 5 15 Zhao P and Fan E G 2020 Physica D 402 132213 16 Tian S F 2017 J. Diff. Equ. 262 506 17 Wang D S, Guo B L and Wang X L 2019 J. Diff. Equ. 266 5209 18 Tajiri M and Arai T 1999 Phys. Rev. E 60 2297 19 Akhmediev N, Soto-Crespo J and Ankiewicz A 2009 Phys. Rev. A 80 043818 20 Kedziora D J, Ankiewicz A and Akhmediev N 2012 Phys. Rev. E 85 066601 21 He J S, Zhang H R, Wang L H and Fokas A S 2013 Phys. Rev. E 87 052914 22 Yue Y F, Huang L L and Chen Y 2018 Comput. Math. Appl. 75 2538 23 Wang X B, Tian S F, Qin C Y and Zhang T T 2017 Appl. Math. Lett. 68 40 24 Liu Y Q, Wen X Y and Wang D S 2019 Comput. Math. Appl. 78 1 25 Zhang H Q and Ma W X 2017 Nonlinear Dyn. 87 2305 26 Zhang X E, Chen Y and Zhang Y 2017 Comput. Math. Appl. 74 2341 27 Yong X L, Ma W X, Huang Y H and Liu Y 2018 Comput. Math. Appl. 75 3414 28 Huang L L, Yue Y F and Chen Y 2018 Comput. Math. Appl. 74 831 29 Wang H F and Zhang Y F 2020 Chin. Phys. B 29 040501 30 Ma W X, Zhang Y and Tang Y N 2020 East Asian J. Appl. Math. 10 732 31 Yang J Y, Ma W X and Khalique C M 2020 Eur. Phys. J. Plus. 135 494 32 Ma W X and Zhang L Q 2020 Pramana-J. Phys. 94 43 33 Ma W X 2015 Phys. Lett. A 379 1975 34 Lü X, Chen S T and Ma W X 2006 Nonlinear Dyn. 86 523 35 Wang J, An H L and Li B 2019 Mod. Phys. Lett. B 33 1950262 36 Yang J Y, Ma W X and Qin Z Y 2017 Anal. Math. Phys. 8 427 37 Yang J Y and Ma W X 2017 Comput. Math. Appl. 73 220 38 Wen X Y and Wang H T 2020 Acta Phys. Sin. 69 010205 (in Chinese) 39 Whitham G B 1974 Linear and Nonlinear Waves(New York: John Wiley & Sons) 40 Kundu P K 1990 Fluid Mechanics (San Diego: Academic Press) 41 Lamb H1945 Hydrodynamics (Cambridge: Cambridge University Press) 42 Lan Z, Gao Y, Yang J W, Su C Q and Wang Q 2016 Mod. Phys. Lett. B 30 1650265 43 Yang X, Fan R and Li B 2020 Phys. Scr. 95 045213 44 Peng W Q, Tian S F and Zhang T T 2018 Phys. Lett. A 382 2701 45 Feng L L, Tian S F, Wang X B and Zhang T T 2019 Frontiers of Mathematics in China 14 631 46 Lü X and Li J 2014 Nonlinear Dyn. 77 135 47 Xin X P, Liu X Q and Zhang L L 2010 Appl. Math. Comput. 215 3669 48 Satsuma J and Ablowitz M J 1979 J. Math. Phys. 20 1496 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|