Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 118102    DOI: 10.1088/1674-1056/ab9f29
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles

Zafar Ali1, Javaid Ismail1, Rafaqat Hussain2, A. Shah3, Arshad Mahmood3, Arbab Mohammad Toufiq4, and Shams ur Rahman1, †
1 Department of Physics, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
2 Department of Chemistry, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
3 National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences (NILOP-C, PIEAS), Nilore 45650, Islamabad, Pakistan
4 Department of Physics, Hazara University Mansehra, Mansehra 21300, Pakistan
Abstract  

We report the hydrothermal growth of pure and doped TiO2 nanoparticles with different concentrations of carbon. The microstructure of the as-synthesized samples is characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy (EDX), and Raman spectroscopy to understand the structure and composition. The XRD patterns confirm the formation of anatase phase of TiO2 with the average crystallite size is calculated to be in the range of 13 nm to 14.7 nm. The functional groups of these nanostructures are characterized by Fourier transformed infrared (FT-IR) spectroscopy, which further confirms the single anatase phase of the synthesized nanostructures. UV-visible absorption spectroscopy is used to understand the absorption behavior, which shows modification in the optical bandgap from 3.13 eV (pure TiO2) to 3.74 eV (1.2 mol% C-doped TiO2). Furthermore, the Ti3+ centers associated with oxygen vacancies are identified using electron paramagnetic resonance spectroscopy (EPR).

Keywords:  titanium dioxide      hydrothermal synthesis      defect states      bandgap  
Received:  17 April 2020      Revised:  03 June 2020      Accepted manuscript online:  23 June 2020
Fund: The authors would like to thank the Higher Education Commission of Pakistan for providing funding (NRPU project 5349/Federal/NRPU/R&D/HEC/2016).
Corresponding Authors:  Corresponding author. E-mail: vitto.han@gmail.com   

Cite this article: 

Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles 2020 Chin. Phys. B 29 118102

Fig. 1.  

The XRD patterns of pure and C-doped TiO2 NPs synthesized by the hydrothermal approach.

Fig. 2.  

The EDX spectrum of (a) pure and (b) 1.2% C-doped TiO2 NPs.

Fig. 3.  

The FESEM images showing the morphology of (a) pure TiO2 and (b) 1.2% C-doped TiO2 NPs.

Fig. 4.  

Raman spectra of pure and C-doped TiO2 NPs.

Fig. 5.  

The FT-IR spectra of pure and C-doped TiO2 NPs.

Fig. 6.  

(a) UV–vis absorption spectra, (b) Tauc plot of pure and carbon-doped TiO2 NPs.

Doping concentration of glucose/mol% Absorption wavelength/nm Bandgap/eV
0.00 396 3.13
0.20 350 3.54
0.60 339 3.66
1.20 332 3.74
Table 1.  

Bandgap of the undoped and doped TiO2 NPs and their corresponding absorption wavelengths.

Fig. 7.  

Room temperature EPR spectra of pure and C-doped TiO2 NPs.

[1]
Khan A, Toufiq A M, Tariq F, Khan Y, Hussain R, Akhtar N, Rahman S U 2019 Mater. Res. Express. 6 065043 DOI: 10.1088/2053-1591/ab0aaf
[2]
Wu Z, Yang S, Wu W 2016 Nanoscale 8 1237 DOI: 10.1039/C5NR07681A
[3]
Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H 2017 J. Mater. Chem. A 5 8155 DOI: 10.1039/C7TA02454A
[4]
Pandey S C, Xu X, Williamson I, Nelson E B, Li L 2017 Chem. Phys. Lett. 669 1 DOI: 10.1016/j.cplett.2016.12.005
[5]
Vardi N, Anouchi E, Yamin T, Middey S, Kareev M, Chakhalian J, Dubi Y, Sharoni A 2017 Adv. Mater. 29 1605029 DOI: 10.1002/adma.201605029
[6]
Hong F, Yue B, Hirao N, Liu Z, Chen B 2017 Sci. Rep. 7 44078 DOI: 10.1038/srep44078
[7]
Yin Z, Tordjman M, Lee Y, Vardi A, Kalish R, del Alamo J A 2018 Sci. Adv. 4 eaau0480 DOI: 10.1126/sciadv.aau0480
[8]
Ye K, Li K, Lu Y, Guo Z, Ni N, Liu H, Huang Y, Ji H, Wang P 2019 Trends Analyt Chem. 116 102 DOI: 10.1016/j.trac.2019.05.002
[9]
Ye K, Li Y, Yang H, Li M, Huang Y, Zhang S, Ji H 2019 Appl. Catal. B 259 118085 DOI: 10.1016/j.apcatb.2019.118085
[10]
Ye K H, Wang Z, Li H, Yuan Y, Huang Y, Mai W 2018 Sci. China Mater. 61 887 DOI: 10.1007/s40843-017-9199-5
[11]
Huang Y, Guo Z, Liu H, Zhang S, Wang P, Lu J, Tong Y 2019 Adv. Funct. Mater. 29 1903490 DOI: 10.1002/adfm.v29.45
[12]
Rahman M, Krishna K, Soga T, Jimbo T, Umeno M 1999 J. Phys. Chem. Solids 60 201 DOI: 10.1016/S0022-3697(98)00264-9
[13]
Beltran A, Gracia L, Andres J 2006 J. Phys. Chem. B 110 23417 DOI: 10.1021/jp0643000
[14]
Smith S J, Stevens R, Liu S, Li G, Navrotsky A, Boerio-Goates J, Woodfield B F 2009 Am. Mineral. 94 236 DOI: 10.2138/am.2009.3050
[15]
Zallen R, Moret M 2006 Solid State Commun. 137 154 DOI: 10.1016/j.ssc.2005.10.024
[16]
Djarri A, Achour A, Soussou M A, Sobti N, Achour S 2018 Mater. Charact. 135 139 DOI: 10.1016/j.matchar.2017.10.008
[17]
Barnard A, Curtiss L 2005 Nano Lett. 5 1261 DOI: 10.1021/nl050355m
[18]
Wu T, Kong W, Zhang Y, Xing Z, Zhao J, Wang T, Shi X, Luo Y, Sun X 2019 small Methods 3 1900356 DOI: 10.1002/smtd.v3.11
[19]
Wu T, Zhu X, Xing Z, Mou S, Li C, Qiao Y, Liu Q, Luo Y, Shi X, Zhang Y, Sun X 2019 Angew. Chem. Int. Ed. 58 18449 DOI: 10.1002/anie.v58.51
[20]
Li B, Zhu X, Wang J, Xing R, Liu Q, Shi X, Luo Y, Liu S, Niu X, Sun X 2020 Chem. Comm. 56 1074 DOI: 10.1039/C9CC08971C
[21]
Hiroshi I, Yuka W, Kazuhito H 2003 Chem. Lett. 32 772 DOI: 10.1246/cl.2003.772
[22]
Wang J, Tafen D N, Lewis J P, Hong Z, Manivannan A, Zhi M, Li M, Wu N 2009 J. Am. Chem. Soc. 131 12290 DOI: 10.1021/ja903781h
[23]
Yan X, Yuan K, Lu N, Xu H, Zhang S, Takeuchi N, Kobayashi H, Li R 2017 Appl. Catal. B 218 20 DOI: 10.1016/j.apcatb.2017.06.022
[24]
Nyamukamba P, Tichagwa L, Greyling C 2012 Mater. Sci. Forum 712 49 DOI: 10.4028/www.scientific.net/MSF.712
[25]
Umebayashi T, Yamaki T, Itoh H, Asai K 2002 Appl. Phys. Lett. 81 454 DOI: 10.1063/1.1493647
[26]
Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z 2007 Appl. Catal. B 69 138 DOI: 10.1016/j.apcatb.2006.06.015
[27]
Ali M, Hussain R, Tariq F, Noreen Z, Toufiq A M, Bokhari H, Akhtar N, ur Rahman S 2020 Appl. Nanosci. 10 1005 DOI: 10.1007/s13204-019-01193-0
[28]
Shao J, Sheng W, Wang M, Li S, Chen J, Zhang Y, Cao S 2017 Appl. Catal. B 209 311 DOI: 10.1016/j.apcatb.2017.03.008
[29]
Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez S S 2018 J. Hazard. Mater. 350 108 DOI: 10.1016/j.jhazmat.2018.02.022
[30]
Al-Degs Y S, El-Barghouthi M I, El-Sheikh A H, Walker G M 2008 Dyes Pigm. 77 16 DOI: 10.1016/j.dyepig.2007.03.001
[31]
Yang G, Jiang Z, Shi H, Xiao T, Yan Z 2010 J. Mater. Chem. 20 5301 DOI: 10.1039/C0JM00376J
[32]
Abdullah A M, Al-Thani N J, Tawbi K, Al-Kandari H 2016 Arab. J. Chem. 9 229 DOI: 10.1016/j.arabjc.2015.04.027
[33]
Sim L C, Leong K H, Ibrahim S, Saravanan P 2014 J. Mater. Chem. A 2 5315 DOI: 10.1039/C3TA14857B
[34]
Attar A S, Ghamsari M S, Hajiesmaeilbaigi F, Mirdamadi S 2008 J. Mater. Sci. 43 1723 DOI: 10.1007/s10853-007-2244-z
[35]
Toufiq A M, Wang F, Li Q, Li Y 2014 Appl. Phys. A 116 1127 DOI: 10.1007/s00339-013-8195-0
[36]
Shaban M, Ashraf A M, Abukhadra M R 2018 Sci. Rep. 8 781 DOI: 10.1038/s41598-018-19172-w
[37]
Ratova M, Klaysri R, Praserthdam P, Kelly P J 2018 Vacuum 149 214 DOI: 10.1016/j.vacuum.2018.01.003
[38]
Lin H, Huang C, Li W, Ni C, Shah S I, Tseng Y H 2006 Appl. Catal. B 68 1 DOI: 10.1016/j.apcatb.2006.07.018
[39]
Brus L E 1984 J. Chem. Phys. 80 4403 DOI: 10.1063/1.447218
[40]
Rino J-P, Studart N 1999 Phys. Rev. B 59 6643 DOI: 10.1103/PhysRevB.59.6643
[41]
Bhange P, Awate S, Gholap R, Gokavi G, Bhange D 2016 Mater. Res. Bull. 76 264 DOI: 10.1016/j.materresbull.2015.12.041
[42]
Linsebigler A L, Lu G, Yates J T Jr 1995 Chem. Rev. 95 735 DOI: 10.1021/cr00035a013
[43]
Lu X H, Huang X, Xie S L, Zheng D Z, Liu Z Q, Liang C L, Tong Y X 2010 Langmuir 26 7569 DOI: 10.1021/la904882t
[44]
Pham C V, Krueger M, Eck M, Weber S, Erdem E 2014 Appl. Phys. Lett. 104 132102 DOI: 10.1063/1.4870297
[45]
Lund A, Shiotani M, Shimada S 2011 Principles and applications of ESR spectroscopy New York Springer 91
[46]
Zhou S, Čižmár E, Potzger K, Krause M, Talut G, Helm M, Fassbender J, Zvyagin S, Wosnitza J, Schmidt H 2009 Phys. Rev. B 79 113201 DOI: 10.1103/PhysRevB.79.113201
[47]
Hurum D C, Gray K A, Rajh T, Thurnauer M C 2005 J. Phys. Chem. B 109 977 DOI: 10.1021/jp045395d
[48]
Ogale S B 2010 Adv. Mater. 22 3125 DOI: 10.1002/adma.200903891
[49]
Tian Y, Bakaul S R, Wu T 2012 Nanoscale 4 1529 DOI: 10.1039/c2nr11767c
[50]
Peng H, Li J, Li S S, Xia J B 2009 Phys. Rev. B 79 092411 DOI: 10.1103/PhysRevB.79.092411
[51]
Yoon S D, Chen Y, Yang A, Goodrich T L, Zuo X, Arena D A, Ziemer K, Vittoria C, Harris V G 2006 J. Phys.: Condens. Matter 18 L355 DOI: 10.1088/0953-8984/18/27/L01
[52]
Hong N H, Sakai J, Poirot N, Brizé V 2006 Phys. Rev. B 73 132404 DOI: 10.1103/PhysRevB.73.132404
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(4): 043101.
[8] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[11] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[12] Amplitude and phase controlled absorption and dispersion of coherently driven five-level atom in double-band photonic crystal
Li Jiang(姜丽), Ren-Gang Wan(万仁刚). Chin. Phys. B, 2019, 28(2): 024206.
[13] Review of deep ultraviolet photodetector based on gallium oxide
Yuan Qin(覃愿), Shibing Long(龙世兵), Hang Dong(董航), Qiming He(何启鸣), Guangzhong Jian(菅光忠), Ying Zhang(张颖), Xiaohu Hou(侯小虎), Pengju Tan(谭鹏举), Zhongfang Zhang(张中方), Hangbing Lv(吕杭炳), Qi Liu(刘琦), Ming Liu(刘明). Chin. Phys. B, 2019, 28(1): 018501.
[14] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[15] Simulation and experimental investigation of low-frequency vibration reduction of honeycomb phononic crystals
Han-Bo Shao(邵瀚波), Guo-Ping Chen(陈国平), Huan He(何欢), Jin-Hui Jiang(姜金辉). Chin. Phys. B, 2018, 27(12): 126301.
No Suggested Reading articles found!