Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107301    DOI: 10.1088/1674-1056/ab99b0
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hidden Anderson localization in disorder-free Ising–Kondo lattice

Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†
1 School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China
Abstract  

Anderson localization (AL) phenomena usually exist in systems with random potential. However, disorder-free quantum many-body systems with local conservation can also exhibit AL or even many-body localization transition. We show that the AL phase exists in a modified Kondo lattice without external random potential. The density of state, inverse participation ratio and temperature-dependent resistance are computed by classical Monte Carlo simulation, which uncovers an AL phase from the previously studied Fermi liquid and Mott insulator regimes. The occurrence of AL roots from quenched disorder formed by conservative localized moments. Interestingly, a many-body wavefunction is found, which captures elements in all three paramagnetic phases and is used to compute their quantum entanglement. In light of these findings, we expect that the disorder-free AL phenomena can exist in generic translation-invariant quantum many-body systems.

Keywords:  Anderson localization      Ising-Kondo lattice      many-body wavefunction      quantum entanglement  
Received:  10 February 2020      Revised:  02 June 2020      Accepted manuscript online:  05 June 2020
PACS:  72.15.Rn (Localization effects (Anderson or weak localization))  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
Corresponding Authors:  Corresponding author. E-mail: zhongy@lzu.edu.cn   
About author: 
†Corresponding author. E-mail: zhongy@lzu.edu.cn
* Project supported in part by the National Natural Science Foundation of China (Grant Nos. 11704166, 11834005, and 11874188).

Cite this article: 

Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)† Hidden Anderson localization in disorder-free Ising–Kondo lattice 2020 Chin. Phys. B 29 107301

Fig. 1.  

Finite temperature phase diagram of Ising–Kondo lattice (IKL) model on square lattice (Eq. 1) from classical Monte Carlo (MC) simulation. There exist Fermi liquid (FL), Mott insulator (MI), Néel antiferromagnetic insulator (NAI) and an Anderson localization (AL) phase.

Fig. 2.  

Density of state (DOS) of conduction electron N(ω) in (a) FL (J / t = 2), (b) AL (J / t = 8) and (c) MI (J / t = 14) phases at T / t = 0.4.

Fig. 3.  

Inverse participation ratio (IPR) of conduction electron IPR(ω) in (a) FL (J / t = 2), (b) AL (J / t = 8) and (c) MI (J / t = 14) phases at T / t = 0.4. (d) Finite-size extrapolation of IPR at Fermi energy ω = 0.

Fig. 4.  

Temperature-dependent resistance of conduction electron ρ versus T for different Kondo coupling J / t. Red dots indicate magnetic critical temperature Tc.

Fig. 5.  

The DOS and IPR for J / t = 8 at effective temperature T = ∞.

Fig. 6.  

The entanglement entropy SEE of many-body wavefunction (7) for different boundary size Lc between two subsystems and different Kondo coupling J.

Fig. D1.  

SEE and IPR(0) versus chemical potential μ for the doped system with J / t = 8 at T = ∞.

Fig. E1.  

DOS of conduction electron N(ω) in MI (J / t = 15) at different temperatures: (a) T / t = 0.1, (b) T / t = 0.4, (c) T / t = 0.8. With increasing temperature, the DOS at Fermi surface increases and the gap decreases.

Fig. E2.  

The IPR versus temperature at J / t = 15, which is calculated at thermodynamic limit.

[1]
Anderson P W 1958 Phys. Rev. B 109 1492 DOI: 10.1103/PhysRev.109.1492
[2]
Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 DOI: 10.1103/RevModPhys.57.287
[3]
Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355 DOI: 10.1103/RevModPhys.80.1355
[4]
Gornyi I V, Mirlin A D, Polyakov D G 2005 Phys. Rev. Lett. 95 206603 DOI: 10.1103/PhysRevLett.95.206603
[5]
Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126 DOI: 10.1016/j.aop.2005.11.014
[6]
Nandkishore R, Huse D A 2015 Annu. Rev. Condens. Matter Phys. 6 15 DOI: 10.1146/annurev-conmatphys-031214-014726
[7]
Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001 DOI: 10.1103/RevModPhys.91.021001
[8]
Antipov A E, Javanmard Y, Ribeiro P, Kirchner S 2016 Phys. Rev. Lett. 117 146601 DOI: 10.1103/PhysRevLett.117.146601
[9]
Gonçalves M, Ribeiro P, Mondaini R, Castro E V 2019 Phys. Rev. Lett. 122 126601 DOI: 10.1103/PhysRevLett.122.126601
[10]
Smith A, Knolle J, Kovrizhin D L, Moessner R 2017 Phys. Rev. Lett. 118 266601 DOI: 10.1103/PhysRevLett.118.266601
[11]
Smith A, Knolle J, Moessner R, Kovrizhin D L 2018 Phys. Rev. B 97 245137 DOI: 10.1103/PhysRevB.97.245137
[12]
Srednicki M 1994 Phys. Rev. E 50 888 DOI: 10.1103/PhysRevE.50.888
[13]
Rigol M, Dunjko V, Olshanii M 2008 Nature 452 854 DOI: 10.1038/nature06838
[14]
Kogut J B 1979 Rev. Mod. Phys. 51 659 DOI: 10.1103/RevModPhys.51.659
[15]
Smith A, Knolle J, Moessner R, Kovrizhin D L 2017 Phys. Rev. Lett. 119 176601 DOI: 10.1103/PhysRevLett.119.176601
[16]
Sikkema A E, Buyers W J L, Affleck I, Gan J 1996 Phys. Rev. B 54 9322 DOI: 10.1103/PhysRevB.54.9322
[17]
Yang W W, Zhao J Z, Luo H G, Zhong Y 2019 Phys. Rev. B 100 045148 DOI: 10.1103/PhysRevB.100.045148
[18]
White S R, Scalapino D J 1998 Phys. Rev. Lett. 80 1272 DOI: 10.1103/PhysRevLett.80.1272
[19]
Lynn J W, Skanthakumar S, Huang Q, Sinha S K, Hossain Z, Gupta L C, Nagarajan R, Godart C 1997 Phys. Rev. B 55 6584 DOI: 10.1103/PhysRevB.55.6584
[20]
Falicov L M, Kimball J C 1969 Phys. Rev. Lett. 22 997 DOI: 10.1103/PhysRevLett.22.997
[21]
Mydosh J A, Oppeneer P M 2011 Rev. Mod. Phys. 83 1301 DOI: 10.1103/RevModPhys.83.1301
[22]
Coleman P 2015 Introduction to Many Body Physics Cambridge Cambridge University Press 486 580
[23]
Si Q, Paschen S 2013 Phys. Stat. Solid. B 250 425 DOI: 10.1002/pssb.201300005
[24]
Coleman P, Nevidomskyy A H 2010 J. Low Temp. Phys. 161 182 DOI: 10.1007/s10909-010-0213-4
[25]
Kitaev A 2003 Ann. Phys. 303 2 DOI: 10.1016/S0003-4916(02)00018-0
[26]
Kitaev A 2006 Ann. Phys. 321 2 DOI: 10.1016/j.aop.2005.10.005
[27]
Maska M M, Czajka K 2006 Phys. Rev. B 74 035109 DOI: 10.1103/PhysRevB.74.035109
[28]
Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N, Dagotto E 1998 Phys. Rev. Lett. 80 845 DOI: 10.1103/PhysRevLett.80.845
[29]
Dagotto E, Yunoki S, Malvezzi A L, Moreo A, Hu J, Capponi S, Poilblanc D, Furukawa N 1998 Phys. Rev. B 58 6414 DOI: 10.1103/PhysRevB.58.6414
[30]
Žonda M, Okamoto J, Thoss M 2019 Phys. Rev. B 100 075124 DOI: 10.1103/PhysRevB.100.075124
[31]
Malmi-Kakkada A N, Valls O T, Dasgupta C 2014 Phys. Rev. B 90 024202 DOI: 10.1103/PhysRevB.90.024202
[32]
Binder K, Young A P 1986 Rev. Mod. Phys. 58 801 DOI: 10.1103/RevModPhys.58.801
[33]
Tran M T 2007 Phys. Rev. B 76 245122 DOI: 10.1103/PhysRevB.76.245122
[34]
Byczuk K, Hofstetter W, Vollhardt D 2010 Int. J. Mod. Phys. B 24 1727 DOI: 10.1142/S0217979210064575
[35]
Dzero M, Sun K, Coleman P, Galitski V 2012 Phys. Rev. B 85 045130 DOI: 10.1103/PhysRevB.85.045130
[36]
Eisert J, Cramer M, Plenio M B 2010 Rev. Mod. Phys. 82 277 DOI: 10.1103/RevModPhys.82.277
[37]
Wolf M M 2006 Phys. Rev. Lett. 96 010404 DOI: 10.1103/PhysRevLett.96.010404
[38]
Gioev D, Klich I 2006 Phys. Rev. Lett. 96 100503 DOI: 10.1103/PhysRevLett.96.100503
[39]
Hubbard J 1959 Phys. Rev. Lett. 3 77 DOI: 10.1103/PhysRevLett.3.77
[40]
Stratonovich R L 1957 Sov. Phys.-Dokl. 2 416 https://ui.adsabs.harvard.edu/abs/1957SPhD....2..416S
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[5] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[6] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[9] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[10] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[11] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[12] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[13] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[14] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!