Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(11): 110304    DOI: 10.1088/1674-1056/abaedd
GENERAL Prev   Next  

New semi-quantum key agreement protocol based on high-dimensional single-particle states

Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润)
Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
Abstract  

A new efficient two-party semi-quantum key agreement protocol is proposed with high-dimensional single-particle states. Different from the previous semi-quantum key agreement protocols based on the two-level quantum system, the propounded protocol makes use of the advantage of the high-dimensional quantum system, which possesses higher efficiency and better robustness against eavesdropping. Besides, the protocol allows the classical participant to encode the secret key with qudit shifting operations without involving any quantum measurement abilities. The designed semi-quantum key agreement protocol could resist both participant attacks and outsider attacks. Meanwhile, the conjoint analysis of security and efficiency provides an appropriate choice for reference on the dimension of single-particle states and the number of decoy states.

Keywords:  semi-quantum key agreement protocol      high-dimensional quantum state      quantum cryptography      quantum communication  
Received:  14 July 2020      Revised:  05 August 2020      Accepted manuscript online:  13 August 2020
Fund: the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033) and the Major Academic Discipline and Technical Leader of Jiangxi Province, China (Grant No. 20162BCB22011).
Corresponding Authors:  Corresponding author. E-mail: nrzhou@ncu.edu.cn   

Cite this article: 

Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润) New semi-quantum key agreement protocol based on high-dimensional single-particle states 2020 Chin. Phys. B 29 110304

Measurement result Encoding result
|0〉 0
|1〉 1
|d – 1〉 d – 1
Table 1.  

Encoding rule.

Fig. 1.  

Probability of detected eavesdropping.

Fig. 2.  

Relationship between efficiency and dimension.

QR QC QPNQO CPNO Efficiency/%
Ref. [3] single photon 1 SPUO+SPM None 16.67
Ref. [28] Bell state 2 SPUO+BM CBM+PO+RO+PP 9.09
Ref. [29] Bell state 4 SPM+BM CBM+PO+RO 6.7
Ref. [30] cluster state 4 SPM+BM+FPOM CBM+RO+PP 2.08
Ours single photon 3 SPM QSO+PO+RO $\displaystyle \frac{100{\mathrm{log}}_{2}d}{4+{\mathrm{log}}_{2}d}$
Table 2.  

Comparisons of some typical protocols and our protocol.

[1]
Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing December 10–12, 1984 Bangalore, India 175
[2]
Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149 DOI: 10.1049/el:20045183
[3]
Chong S K, Hwang T 2010 Opt. Commun. 283 11923 DOI: 10.1016/j.optcom.2009.11.007
[4]
Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793 DOI: 10.1007/s10773-011-0691-4
[5]
Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921 DOI: 10.1007/s11128-012-0443-2
[6]
Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797 DOI: 10.1007/s11128-012-0492-6
[7]
Sun Z, Zhang C, Wang B, Li Q, Long D 2013 Quantum Inf. Process. 12 3411 DOI: 10.1007/s11128-013-0608-7
[8]
Shukla C, Alam N, Pathak A 2014 Quantum Inf. Process. 13 2391 DOI: 10.1007/s11128-014-0784-0
[9]
Huang W, Wen Q Y, Liu B, Gao F, Sun Y 2014 Quantum Inf. Process. 12 649 DOI: 10.1007/s11128-013-0680-z
[10]
Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587 DOI: 10.1007/s11128-014-0816-9
[11]
He Y F, Ma W P 2016 Quantum Inf. Process. 14 1650007 DOI: 10.1142/S0219749916500076
[12]
Shen D S, Ma W P, Wang L L 2014 Quantum Inf. Process. 13 2313 DOI: 10.1007/s11128-014-0785-z
[13]
Yang Y G, Li B R, Kang S Y, Chen X B, Zhou Y H, Shi W M 2019 Quantum Inf. Process. 18 77 DOI: 10.1007/s11128-019-2200-2
[14]
Liu H N, Liang X Q, Jiang D H, Xu G B, Zheng W M 2013 Quantum Inf. Process. 18 242 DOI: 10.1007/s11128-019-2346-y
[15]
Cai T, Jiang M, Cao G 2018 Quantum Inf. Process. 17 103 DOI: 10.1007/s11128-018-1871-4
[16]
Liu B, Xiao D, Jia H Y, Liu R Z 2016 Quantum Inf. Process. 15 2113 DOI: 10.1007/s11128-016-1264-5
[17]
Wang P, Sun Z W, Sun X Q 2017 Quantum Inf. Process. 16 170 DOI: 10.1007/s11128-017-1621-z
[18]
Boyer M, Kenigsberg D, Mor T 2007 Phys. Rev. Lett. 99 140501 DOI: 10.1103/PhysRevLett.99.140501
[19]
Guo Y, Su Y, Zhou J, Zhang L, Huang D 2019 Chin. Phys. B 28 010305 DOI: 10.1088/1674-1056/28/1/010305
[20]
Zhou N R, Zhu K N, Zou X F 2019 Ann. Phys. 531 1800520 DOI: 10.1002/andp.201800520
[21]
He R S, Jiang M S, Wang Y, Gan Y H, Zhou C, Bao W S 2019 Chin. Phys. B 28 040303 DOI: 10.1088/1674-1056/28/4/040303
[22]
Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303 in Chinese DOI: 10.7498/aps.66.230303
[23]
Luo Y P, Hwang T 2018 Quantum Inf. Process. 15 947 DOI: 10.1007/s11128-015-1182-y
[24]
Xiang Y, Liu J, Bai M Q, Yang X, Mo Z W 2019 Int. J. Theor. Phys. 58 2883 DOI: 10.1007/s10773-019-04171-y
[25]
Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 197 DOI: 10.1007/s11128-019-2308-4
[26]
Jiang L Z 2020 Quantum Inf. Process. 19 180 DOI: 10.1007/s11128-020-02674-w
[27]
Liu W J, Chen Z Y, Ji S, Wang H B, Zhang J 2017 Int. J. Theor. Phys. 56 3164 DOI: 10.1007/s10773-017-3484-6
[28]
Shukla C, Thapliyal K, Pathak A 2017 Quantum Inf. Process. 16 295 DOI: 10.1007/s11128-017-1736-2
[29]
Yan L L, Zhang S B, Chang Y, Sheng Z W, Sun Y H 2019 Quantum Inf. Process. 58 3852 DOI: 10.1007/s10773-019-04252-y
[30]
Zhou N R, Zhu K N, Wang Y Q 2020 Int. J. Theor. Phys. 59 663 DOI: 10.1007/s10773-019-04288-0
[31]
Shi Z, Mirhosseini M, Margiewicz J, Malik M, Rivera F, Zhu Z, Boyd R W 2013 Optica 12 3411 DOI: 10.1364/OPTICA.2.000388
[32]
Molina-Terriza G, Vaziri A, Rehacek J, Hradil Z, Zeilinger A 2004 Phys. Rev. A 92 167903 DOI: 10.1103/PhysRevLett.92.167903
[33]
Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lutkenhaus N, Forbes A 2013 Phys. Rev. A 88 032305 DOI: 10.1103/PhysRevA.88.032305
[34]
De Oliveira M, Nape I, Pinnell J, TabeBordbar N, Forbes A 2020 Phys. Rev. A 101 042303 DOI: 10.1103/PhysRevA.101.042303
[35]
Nunn J, Wright L J, Soller C, Zhang L, Walmsley I A, Smith B J 2013 Opt. Express 21 15959 DOI: 10.1364/OE.21.015959
[36]
Tang G Z, Sun S H, Chen H, Li C Y, Liang L M 2016 Chin. Phys. Lett. 33 120301 DOI: 10.1088/0256-307X/33/12/120301
[37]
Niu M Y, Xu F, Shapiro J H, Furrer F 2016 Phys. Rev. A 94 052323 DOI: 10.1103/PhysRevA.94.052323
[38]
Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Willner A E 2012 Nat. Photon. 6 488 DOI: 10.1038/NPHOTON.2012.138
[39]
Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305 DOI: 10.1103/PhysRevA.71.044305
[40]
Bradler K, Mirhosseini M, Fickler R, Broadbent A, Boyd R 2016 New J. Phys. 18 073030 DOI: 10.1088/1367-2630/18/7/073030
[41]
Yan X Y, Zhou N R, Gong L H, Wang Y Q, Wen X J 2013 Quantum Inf. Process. 18 271 DOI: 10.1007/s11128-019-2368-5
[42]
Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282 DOI: 10.1007/s10773-019-04019-5
[43]
Nie Y Y, Li Y H, Wang Z S 2013 Quantum Inf. Process. 12 437 DOI: 10.1007/s11128-012-0388-5
[44]
Cai Q Y 2006 Phys. Lett. A 351 23 DOI: 10.1016/j.physleta.2005.10.050
[45]
Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302 DOI: 10.1103/PhysRevA.74.054302
[46]
Yang Y G, Sun S J, Zhao Q Q 2015 Quantum Inf. Process. 14 681 DOI: 10.1007/s11128-014-0872-1
[47]
Cabello A 2000 Phys. Rev. Lett. 85 5635 DOI: 10.1103/PhysRevLett.85.5635
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[11] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[12] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[13] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[14] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[15] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
No Suggested Reading articles found!