CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation |
Lu Li(栗潞)1, Xiu-Hua Cui(崔秀花)1, Hai-Bin Cao(曹海宾)2, Yi Jiang(姜轶)1, Hai-Ming Duan(段海明)1, Qun Jing(井群)1, Jing Liu(刘静)1, Qian Wang(王倩)1 |
1 School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China; 2 Department of Physics, College of Sciences, Shihezi University, Shihezi 832000, China |
|
|
Abstract The stable geometries, electronic structures, and magnetic behaviors of the ScLin (n=2-13) clusters are investigated by using particle swarm optimization (PSO) and density functional theory (DFT). The results show that these clusters have three-dimensional (3D) structures except ScLi2, and ScLi12, and ScLi13 that possess the cage-like structures. In analyses of the average binding energy, second-order difference of energy, and fragmentation energy, ScLi12 cluster is identified as magnetic superatom. The magnetic moment for each of these clusters owns an oscillating curve of different cluster sizes, and their magnetic moments are further investigated using molecular orbitals and jellium model. Of ScLin (n=2-13) clusters, ScLi12 has the largest spin magnetic moment (3 μB), and molecular orbitals of ScLi12 can be described as 1S21P61Dα5Dβ2. Additionally, Mulliken population and AdNDP bonding analysis are discussed and the results reveal that the Sc atom and Lin atoms make equal contribution to the total magnetic moment, and atomic charges transfer between Sc atoms and Li atoms.
|
Received: 12 January 2020
Revised: 14 April 2020
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
13.40.Em
|
(Electric and magnetic moments)
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
36.40.Qv
|
(Stability and fragmentation of clusters)
|
|
Fund: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant Nos. 2018D01C079 and 2018D01C072). |
Corresponding Authors:
Xiu-Hua Cui, Qian Wang
E-mail: xjcxh0991@xju.edu.cn;wq@xju.edu.cn
|
Cite this article:
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩) Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation 2020 Chin. Phys. B 29 077101
|
[1] |
Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A 77 013202
|
[2] |
Jin Y Y, Maroulis G, Kuang X Y, Ding L P, Lu C, Wang J J, Lv J, Zhang C Z and Ju M 2015 Phys. Chem. Chem. Phys. 17 13590
|
[3] |
Lu S J, Xu X L, Feng G, Xu H G, Zheng and W J 2016 J. Phys. Chem. C 120 25628
|
[4] |
Jin Y, Lu S, Hermann A, Kuang X, Zhang C, Lu C, Xu H and Zheng W 2016 Sci. Rep. 6 30116
|
[5] |
Shao P, Chen B L, Ding L P, Luo D B, Lu C and Kuang X Y 2017 Phys. Chem. Chem. Phys. 19 25289
|
[6] |
Lu S J 2019 Phys. Chem. Chem. Phys. 21 26154
|
[7] |
Xiong R, Die D, Xiao L, Xu Y G and Shen X Y 2017 Nanoscale Res. Lett. 12 625
|
[8] |
Zhao Y R, Bai T T, Jia L N, Xin W, Hu Y F, Zheng X S and Hou S T 2019 J. Phys. Chem. C 123 28561
|
[9] |
Kang D, Sun W, Shi H, Lu C, Kuang X, Chen B, Xia X and Maroulis G 2019 Sci. Rep. 9 14367
|
[10] |
Jing Q, Ge G X, Cao H B, Huang X C, Liu X Y and Yan H X 2010 Acta Phys. Chim. Sin. 26 2510
|
[11] |
Jing Q, Tian F Y and Wang Y X 2008 J. Chem. Phys. 128 124319
|
[12] |
Gong X G and Zheng Q Q 1995 Phys. Rev. B 52 4756
|
[13] |
Akola J, Walter M, Whetten R L, Hakkinen H and Gronbeck H 2008 J. Am. Chem. Soc. 130 3756
|
[14] |
Das A, Li T, Nobusada K, Zeng Q, Rosi N L and Jin R 2012 J. Am. Chem. Soc. 134 20286
|
[15] |
Pederson M R, Reuse F and Khanna S N 1998 Phys. Rev. B 58 5632
|
[16] |
Wang J, Bai J, Jellinek J and Zeng X C 2007 J. Am. Chem. Soc. 129 4110
|
[17] |
Ge G X, Yan H X, Jing Q, Huang X M, Wan J G and Wang G H 2013 Eur. Phys. J. D 67 116
|
[18] |
Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P and Pederson M R 2009 Nat. Chem. 1 310
|
[19] |
Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
|
[20] |
Medel Juarez V, Reveles J, Khanna S, Chauhan V, Sen P and Castleman A 2011 Proc. Nat. Acad. Sci. USA 108 10062
|
[21] |
Reveles J, Sen P, Pradhan K, Roy D and Khanna S 2010 J. Phys. Chem. C 114 10739
|
[22] |
Zhang M, Zhang J, Feng X, Zhang H, Zhao L, Luo Y and Cao W 2013 J. Phys. Chem. A 117 13025
|
[23] |
Castleman A W and Khanna S N 2009 J. Phys. Chem. C 113 2664
|
[24] |
Walter M, Akola J, Acevedo O L, Jadzinsky P, Calero G, Ackerson C, Whetten R, Grönbeck H and Häkkinen H 2008 Proc. Nat. Acad. Sci. USA 105 9157
|
[25] |
Pradhan K, Sen P, Reveles J and Khanna S 2008 Phys. Rev. B 77 045408
|
[26] |
Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
|
[27] |
Wang Y, Lv J, Li Q, Wang H and Ma Y 2019 CALYPSO Method for Structure Prediction and Its Applications to Materials Discovery, in Handbook of Materials Modeling, eds. Andreoni W and Yip S (Cham: Springer)
|
[28] |
Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
|
[29] |
Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
|
[30] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[31] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[32] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[33] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[34] |
Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
|
[35] |
Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
|
[36] |
Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
|
[37] |
Wang Y, Lv J, Li Q, Wang H and Ma Y 2018 Handbook of Materials Modeling: Applications: Current and Emerging Materials, eds. Andreoni W and Yip S (Cham: Springer International Publishing) 1 28
|
[38] |
Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
|
[39] |
Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
|
[40] |
Lu S, Wang Y, Liu H, Miao M S and Ma Y 2014 Nat. Commun. 5 3666
|
[41] |
Dong X, Jalife S, Vasquez-Espinal A, Ravell E, Pan S, Cabellos J L, Liang W Y, Cui Z H and Merino G 2018 Angew. Chem. Int. Ed. Engl. 57 4627
|
[42] |
Le Chen B, Sun W G, Kuang X Y, Lu C, Xia X X, Shi H X and Maroulis G 2018 Inorg. Chem. 57 343
|
[43] |
Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT
|
[44] |
Zubarev D Y and Boldyrev A I 2008 Boldyrev. Phys. Chem. Chem. Phys. 10 5207
|
[45] |
Tian Lu and Feiwu Chen 2012 J. Comput. Chem. 33 580
|
[46] |
Tian L and Chen F W 2011 Acta Chim. Sin. 69 2393 (Chinese)
|
[47] |
Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|