CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Lifshitz transition in triangular lattice Kondo-Heisenberg model |
Lan Zhang(张欄)1, Yin Zhong(钟寅)1, Hong-Gang Luo(罗洪刚)1,2 |
1 School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Beijing Computational Science Research Center, Beijing 100084, China |
|
|
Abstract Motivated by recent experimental progress on triangular lattice heavy-fermion compounds, we investigate possible Lifshitz transitions and the scanning tunnel microscope (STM) spectra of the Kondo-Heisenberg model on the triangular lattice. In the heavy Fermi liquid state, the introduced Heisenberg antiferromagnetic interaction (JH) results in the twice Lifshitz transition at the case of the nearest-neighbour electron hopping but with next-nearest-neighbour hole hopping and the case of the nearest-neighbour hole hopping but with next-nearest-neighbour electron hopping, respectively. Driven by JH, the Lifshitz transitions on triangular lattice are all continuous in contrast to the case on square lattice. Furthermore, the STM spectra shows rich line-shape which is influenced by the Kondo coupling JK, the Heisenberg antiferromagnetic interaction JH, and the ratio of the tunneling amplitude of f-electron tf versus conduction electron tc. Our work provides a possible scenario to understand the Fermi surface topology and the quantum critical point in heavy-fermion compounds.
|
Received: 03 March 2020
Revised: 23 April 2020
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674139, 11704166, and 11834005), the Fundamental Research Funds for the Central Universities, China, and PCSIRT, China (Grant No. IRT-16R35). |
Corresponding Authors:
Yin Zhong
E-mail: zhongy@lzu.edu.cn
|
Cite this article:
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚) Lifshitz transition in triangular lattice Kondo-Heisenberg model 2020 Chin. Phys. B 29 077102
|
[1] |
Lifshitz I 1960 Sov. Phys. JETP 11 1130
|
[2] |
Norman M R, Lin J and Millis A J 2010 Phys. Rev. B 81 180513
|
[3] |
Benhabib S, Sacuto A, Civelli M, Paul I, Cazayous M, Gallais Y, Measson M A, Zhong R D, Schneeloch J, Gu G D, Colson D and Forget A 2015 Phys. Rev. Lett. 114 147001
|
[4] |
LeBoeuf D, Doiron-Leyraud N, Vignolle B, Sutherland M, Ramshaw B J, Levallois J, Daou R, Laliberté F, Cyr-Choinière O, Chang J, Jo Y J, Balicas L, Liang R, Bonn D A, Hardy W N, Proust C and Taillefer L 2011 Phys. Rev. B 83 054506
|
[5] |
Khan S N and Johnson D D 2014 Phys. Rev. Lett. 112 156401
|
[6] |
Hodovanets H, Liu Y, Jesche A, Ran S, Mun E D, Lograsso T A, Bud’ko S L and Canfield P C 2014 Phys. Rev. B 89 224517
|
[7] |
Cho K, Konczykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J and Prozorov R 2016 Sci. Adv. 2 e1600807
|
[8] |
Liu Y and Lograsso T A 2014 Phys. Rev. B 90 224508
|
[9] |
Sato T, Nakayama K, Sekiba Y, Richard P, Xu Y M, Souma S, Takahashi T, Chen G F, Luo J L, Wang N L and Ding H 2009 Phys. Rev. Lett. 103 047002
|
[10] |
Nakayama K, Sato T, Richard P, Xu Y M, Kawahara T, Umezawa K, Qian T, Neupane M, Chen G F, Ding H and Takahashi T 2011 Phys. Rev. B 83 020501
|
[11] |
Malaeb W, Shimojima T, Ishida Y, Okazaki K, Ota Y, Ohgushi K, Kihou K, Saito T, Lee C H, Ishida S, Nakajima M, Uchida S, Fukazawa H, Kohori Y, Iyo A, Eisaki H, Chen C T, Watanabe S, Ikeda H and Shin S 2012 Phys. Rev. B 86 165117
|
[12] |
Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, Rienks E, Chen G F, Ieki E, Nakayama K, Sato T, Takahashi T, Shi M and Ding H 2013 Phys. Rev. B 88 220508
|
[13] |
Liu C, Kondo T, Fernandes R M, Palczewski A D, Mun E D, Ni N, Thaler A N, Bostwick A, Rotenberg E, Schmalian J, Budko S L, Canfield P C and Kaminski A 2010 Nat. Phys. 6 419
|
[14] |
Volovik G 2017 Low Temperature Physics 43 47
|
[15] |
Iorsh I V, Dini K, Kibis O V and Shelykh I A 2017 Phys. Rev. B 96 155432
|
[16] |
Daou R, Bergemann C and Julian S R 2006 Phys. Rev. Lett. 96 026401
|
[17] |
Harrison N, Sebastian S E, Mielke C H, Paris A, Gordon M J, Swenson C A, Rickel D G, Pacheco M D, Ruminer P F, Schillig J B, Sims J R, Lacerda A H, Suzuki M T, Harima H and Ebihara T 2007 Phys. Rev. Lett. 99 056401
|
[18] |
Purcell K M, Graf D, Kano M, Bourg J, Palm E C, Murphy T, McDonald R, Mielke C H, Altarawneh M M, Petrovic C, Hu R, Ebihara T, Cooley J, Schlottmann P and Tozer S W 2009 Phys. Rev. B 79 214428
|
[19] |
Schlottmann P 2011 Phys. Rev. B 83 115133
|
[20] |
Pfau H, Daou R, Lausberg S, Naren H R, Brando M, Friedemann S, Wirth S, Westerkamp T, Stockert U, Gegenwart P, Krellner C, Geibel C, Zwicknagl G and Steglich F 2013 Phys. Rev. Lett. 110 256403
|
[21] |
Aoki D, Seyfarth G, Pourret A, Gourgout A, Mc-Collam A, Bruin J A N, Krupko Y and Sheikin I 2016 Phys. Rev. Lett. 116 037202
|
[22] |
Paschen S, Lühmann T, Wirth S, Gegenwart P, Trovarelli O, Geibel C, Steglich F, Coleman P and Si Q 2004 Nature 432 881
|
[23] |
Zhang G M, Su Y H and Yu L 2011 Phys. Rev. B 83 033102
|
[24] |
Zhong Y, Zhang L, Lu H T and Luo H G 2015 Eur. Phys. J. B 88 238
|
[25] |
Liu Y, Zhang G M and Lu Y 2014 Chin. Phys. Lett. 31 087102
|
[26] |
Bercx M and Assaad F F 2012 Phys. Rev. B 86 075108
|
[27] |
Nandy S, Mohanta N, Acharya S and Taraphder A 2016 Phys. Rev. B 94 155103
|
[28] |
Burdin S and Lacroix C 2013 Phys. Rev. Lett. 110 226403
|
[29] |
Grandi F, Amaricci A, Capone M and Fabrizio M 2018 Phys. Rev. B 98 045105
|
[30] |
Sinha S K, Lander G H, Shapiro S M and Vogt O 1980 Phys. Rev. Lett. 45 1028
|
[31] |
Zieba A, Slota M and Kucharczyk M 2000 Phys. Rev. B 61 3435
|
[32] |
Isaev L and Vekhter I 2013 Phys. Rev. Lett. 110 026403
|
[33] |
Hoshino S and Kuramoto Y 2013 Phys. Rev. Lett. 111 026401
|
[34] |
Asadzadeh M Z, Becca F and Fabrizio M 2013 Phys. Rev. B 87 205144
|
[35] |
Hackl A and Vojta M 2008 Phys. Rev. B 77 134439
|
[36] |
Hackl A and Vojta M 2011 Phys. Rev. Lett. 106 137002
|
[37] |
Bud’ko S L, Morosan E and Canfield P C 2005 Phys. Rev. B 71 054408
|
[38] |
Dong J K, Tokiwa Y, Bud’ko S L, Canfield P C and Gegenwart P 2013 Phys. Rev. Lett. 110 176402
|
[39] |
Bud’ko S L, Morosan E and Canfield P C 2004 Phys. Rev. B 69 014415
|
[40] |
Tokiwa Y, Garst M, Gegenwart P, Bud’ko S L and Canfield P C 2013 Phys. Rev. Lett. 111 116401
|
[41] |
Khalyavin D D, Adroja D T, Manuel P, Daoud-Aladine A, Kosaka M, Kondo K, McEwen K A, Pixley J H and Si Q 2013 Phys. Rev. B 87 220406
|
[42] |
Hara K, Matsuda S, Matsuoka E, Tanigaki K, Ochiai A, Nakamura S, Nojima T and Katoh K 2012 Phys. Rev. B 85 144416
|
[43] |
Aynajian P, da Silva Neto E H, Gyenis A, Baumbach R E, Thompson J, Fisk Z, Bauer E D and Yazdani A 2012 Nature 486 201
|
[44] |
Coleman P and Andrei N 1989 J. Phys.: Condens. Matter 1 4057
|
[45] |
Arispe J, Coqblin B and Lacroix C 1995 Physica B 206-207 255
|
[46] |
Iglesias J R, Lacroix C, Arispe J and Coqblin B 1996 Physica B 223-224 160
|
[47] |
Lacroix C, Iglesias J, Arispe J and Coqblin B 1997 Physica B 230-232 503
|
[48] |
Read N and Newns D M 1983 J. Phys. C: Solid State Phys. 16 3273
|
[49] |
Liu Y, Li H, Zhang G M and Yu L 2012 Phys. Rev. B 86 024526
|
[50] |
Figgins J and Morr D K 2010 Phys. Rev. Lett. 104 187202
|
[51] |
Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
|
[52] |
Fischer O, Kugler M, Maggio-Aprile I, Berthod C and Renner C 2007 Rev. Mod. Phys. 79 353
|
[53] |
Kirchner S, Paschen S, Chen Q, Wirth S, Feng D and Thompson J D and Si Q 2018 arXiv:Q1810.13293
|
[54] |
Tersoff J and Hamann D R 1985 Phys. Rev. B 31 805
|
[55] |
Kummer K, Patil S, Chikina A, Güttler M, Hoppner M, Generalov A, Danzenbacher S, Seiro S, Hannaske A, Krellner C, Kucherenko Y, Shi M, Radovic M, Rienks E, Zwicknagl G, Matho K, Allen J W, Laubschat C, Geibel C and Vyalikh D V 2015 Phys. Rev. X 5 011028
|
[56] |
Allan M, Massee F, Morr D, Van Dyke J, Rost A, Mackenzie A, Petrovic C and Davis J 2013 Nat. Phys. 9 468
|
[57] |
Zhou B B, Misra S, da Silva Neto E H, Aynajian P, Baumbach R E, Thompson J, Bauer E D and Yazdani A 2013 Nat. Phys. 9 474
|
[58] |
Thompson J D and Fisk Z 2012 J. Phys. Soc. Jpn. 81 011002
|
[59] |
Maltseva M, Dzero M and Coleman P 2009 Phys. Rev. Lett. 103 206402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|