Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 075201    DOI: 10.1088/1674-1056/ab8a3e
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor

Nai-Xing Huang(黄乃兴)1,2, En-Wei Sun(孙恩伟)2,3, Rui Zhang(张锐)2, Bin Yang(杨彬)2, Jian Liu(刘俭)2, Tian-Quan Lü(吕天全)2, Wen-Wu Cao(曹文武)2,3
1 Department of Physics, Northeast Petroleum University, Daqing 163318, China;
2 The School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
3 Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Abstract  The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear. In this work, we discuss the influence of temperature on two-dimensional (2D) mode coupling effect and electromechanical coupling coefficient of cylindrical [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio. The electromechanical coupling coefficient kt decreases with temperature increasing, whereas k33 is largely invariant in a temperature range of 25 ℃-55 ℃. With the increase of temperature, the shift in the ‘mode dividing point’ increases the scale of the poling direction of the piezoelectric vibrator. The temperature has little effect on coupling constant Γ. At a given temperature, the coupling constant Γ of the cylindrical vibrator is slightly greater than that of the rectangular vibrator. When the temperature changes, the applicability index (M) values of the two piezoelectric vibrators are close to 1, indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals.
Keywords:  mode coupling effect      piezoelectric vibrator      piezoelectric single crystal      temperature dependence  
Received:  22 February 2020      Revised:  10 April 2020      Accepted manuscript online: 
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  77.65.-j (Piezoelectricity and electromechanical effects)  
  77.65.Fs (Electromechanical resonance; quartz resonators)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the Basic Scientific Research Foundation of College and University in Heilongjiang Province, China (Grant No. 2018QNL-16), the Guiding Science and Technology Project of Daqing City (GSTPDQ), China (Grant No. zd-2019-03), and the National Natural Science Foundation of China (Grant Nos. 11304061 and 51572056).
Corresponding Authors:  Nai-Xing Huang, En-Wei Sun     E-mail:  huangnaixing@163.com;sunew@hit.edu.cn

Cite this article: 

Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武) Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor 2020 Chin. Phys. B 29 075201

[1] Zhang S, Luo J, Hackenberger W, Sherlock N P, Jr R J and Shrout T R 2009 J. Appl. Phys. 105 104506
[2] Qiao L, Li Q, Qiu C, Liu Y, Liu J, Xu Z and Li F 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 1786
[3] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R and Li R W 2017 Chin. Phys. B 26 067702
[4] Tang L, Tian H, Zhang Y and Cao W 2016 Appl. Phys. Lett. 108 082901
[5] Wu J, Gao X, Chen J, Wang C, Zhang S and Dong S 2018 Acta Phys. Sin. 67 207701 (in Chinese)
[6] You J, Guan C and Zhou H 2017 Chin. Phys. B 26 054215
[7] Wang W, Or S W and Luo H 2017 Crystals 7 101
[8] Onoe M and Tiersten H F 1963 IEEE Trans. Ultrason. Eng. 10 32
[9] Ikeda T 1990 Fundamentals of Piezoelectricity (Oxford: Oxford University Press) pp. 116-118
[10] Lamberti N and Pappalardo M 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 243
[11] Kim M, Kim J and Cao W 2006 J. Appl. Phys. 99 074102
[12] Kim M, Kim J and Cao W 2005 Appl. Phys. Lett. 87 132901
[13] Huang N, Zhang R and Cao W 2007 Appl. Phys. Lett. 91 122903
[14] Chen C W, Xiang Y, Tang L G, Cui L, Lin B Q, Du W D and Cao W W 2019 Chin. Phys. B 28 127702
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[3] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[4] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[5] Active control of wall-bounded turbulence for drag reduction with piezoelectric oscillators
Jian-Xia Bai(白建侠), Nan Jiang(姜楠), Xiao-Bo Zheng(郑小波), Zhan-Qi Tang(唐湛琪), Kang-Jun Wang(王康俊), Xiao-Tong Cui(崔晓通). Chin. Phys. B, 2018, 27(7): 074701.
[6] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[7] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[8] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
[9] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[10] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[11] Temperature dependence of single event transient in 90-nm CMOS dual-well and triple-well NMOSFETs
Li Da-Wei (李达维), Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明). Chin. Phys. B, 2013, 22(2): 029401.
[12] Parasitic bipolar amplification in single event transient and its temperature dependence
Liu Zheng (刘征), Chen Shu-Ming (陈书明), Chen Jian-Jun (陈建军), Qin Jun-Rui (秦军瑞), Liu Rong-Rong (刘蓉容). Chin. Phys. B, 2012, 21(9): 099401.
[13] Temperature and drain bias dependence of single event transient in 25-nm FinFET technology
Qin Jun-Rui (秦军瑞), Chen Shu-Ming (陈书明), Li Da-Wei (李达维), Liang Bin (梁斌), Liu Bi-Wei (刘必慰 ). Chin. Phys. B, 2012, 21(8): 089401.
[14] Permittivity and its temperature dependence in hexagonal structure BN dominated by the local electric field
Zhang Ting(张婷), Wu Meng-Qiang(吴孟强), Zhang Shu-Ren(张树人), Xiong Jie(熊杰), Wang Jin-Ming(王金明), Zhang Da-Hai(张大海), He Feng-Mei(何凤梅), and Li Zhong-Ping(李仲平) . Chin. Phys. B, 2012, 21(7): 077701.
[15] Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres
Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) . Chin. Phys. B, 2012, 21(6): 068404.
No Suggested Reading articles found!