Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077803    DOI: 10.1088/1674-1056/ab9433
Special Issue: SPECIAL TOPIC —Terahertz physics
TOPICAL REVIEW—Terahertz physics Prev   Next  

Recent progress in graphene terahertz modulators

Xieyu Chen(陈勰宇)1, Zhen Tian(田震)1, Quan Li(李泉)1, Shaoxian Li(李绍限)1, Xueqian Zhang(张学迁)1, Chunmei Ouyang(欧阳春梅)1, Jianqiang Gu(谷建强)1, Jiaguang Han(韩家广)1, Weili Zhang(张伟力)2
1 Center for Terahertz Waves and School of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology(Ministry of Education), Tianjin University, Tianjin 300072, China;
2 School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Abstract  Graphene has been recognized as a promising candidate in developing tunable terahertz (THz) functional devices due to its excellent optical and electronic properties, such as high carrier mobility and tunable conductivity. Here, we review graphene-based THz modulators we have recently developed. First, the optical properties of graphene are discussed. Then, graphene THz modulators realized by different methods, such as gate voltage, optical pump, and nonlinear response of graphene are presented. Finally, challenges and prospective of graphene THz modulators are also discussed.
Keywords:  terahertz      graphene      modulators  
Received:  27 March 2020      Revised:  03 May 2020      Accepted manuscript online: 
PACS:  78.67.Wj (Optical properties of graphene)  
  87.50.U-  
  42.79.Hp (Optical processors, correlators, and modulators)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701004) and the National Natural Science Foundation of China (Grant Nos. 61675145, 61722509, 61735012, and 61420106006).
Corresponding Authors:  Zhen Tian, Weili Zhang     E-mail:  weili.zhang@okstate.edu

Cite this article: 

Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力) Recent progress in graphene terahertz modulators 2020 Chin. Phys. B 29 077803

[1] Tonouchi M 2007 Nat. Photon. 1 97
[2] Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared Millimeter Terahertz Waves 32 143
[3] Mittleman D M 2018 Opt. Express 26 9417
[4] Lim W X, Manjappa M, Srivastava Y K, Cong L, Kumar A, MacDonald K F and Singh R 2018 Adv. Mater. 30 1705331
[5] Wen T, Zhang C, Zhang X, Liao Y, Xiang Q, Wen Q, Zhang D, Li Y, Zhang H, Jing Y and Zhong Z 2018 Opt. Lett. 43 3021
[6] Chanana A, Liu X, Zhang C, Vardeny Z V and Nahata A 2018 Sci. Adv. 4 eaar7353
[7] Hu Y, Jiang T, Zhou J H, Hao H, Sun H, Ouyang H, Tong M Y, Tang Y X, Li H, You J, Zheng X, Xu Z J and Cheng X G 2020 Nano Energy 68 104280
[8] Savo S, Shrekenhamer D and Padilla W J 2014 Adv. Opt. Mater. 2 275
[9] rivastava Y K, Manjappa M, Cong L, Krishnamoorthy H N S, Savinov V, Pitchappa P and Singh R 2018 Adv. Mater. 30 1801257
[10] Zhao Y C, Zhang Y X, Shi Q W, Liang S X, Huang W X, Kou W and Yang Z Q 2018 ACS Photon. 5 3040
[11] Cai H L, Chen S, Zou C W, Huang Q P, Liu Y, Hu X, Fu Z P, Zhao Y, He H C and Lu Y L 2018 Adv. Opt. Mater. 6 1800257
[12] Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C and Singh R 2018 Nat. Commun. 9 4056
[13] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[14] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[15] Bao Q and Loh K P 2012 ACS Nano 6 3677
[16] Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X and Min B 2012 Nat. Mater. 11 936
[17] Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L and Xing H G 2012 Nat. Commun. 3 780
[18] Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L and Xing H G 2012 Nano Lett. 12 4518
[19] Valmorra F, Scalari G, Maissen C, Fu W, Schonenberger C, Choi J W, Park H G, Beck M and Faist J 2013 Nano Lett. 13 3193
[20] Degl'Innocenti R, Jessop D S, Shah Y D, Sibik J, Zeitler J A, Kidambi P R, Hofmann S, Beere H E and Ritchie D A 2014 ACS Nano 8 2548
[21] Gao W, Shu J, Reichel K, Nickel D V, He X, Shi G, Vajtai R, Ajayan P M, Kono J, Mittleman D M and Xu Q 2014 Nano Lett. 14 1242
[22] Mao Q, Wen Q Y, Tian W, Wen T L, Chen Z, Yang Q H and Zhang H W 2014 Opt. Lett. 39 5649
[23] Liang G Z, Hu X N, Yu X C, Shen Y D, Li L H H, Davies A G, Linfield E H, Liang H K, Zhang Y, Yu S F and Wang Q J 2015 ACS Photon. 2 1559
[24] Shi S F, Zeng B, Han H L, Hong X, Tsai H Z, Jung H S, Zettl A, Crommie M F and Wang F 2015 Nano Lett. 15 372
[25] Wu Y, La-o-vorakiat C, Qiu X, Liu J, Deorani P, Banerjee K, Son J, Chen Y, Chia E E and Yang H 2015 Adv. Mater. 27 1874
[26] Jessop D S, Kindness S J, Xiao L, Braeuninger-Weimer P, Lin H, Ren Y, Ren C X, Hofmann S, Zeitler J A, Beere H E, Ritchie D A and Degl'Innocenti R 2016 Appl. Phys. Lett. 108 171101
[27] Kim T T, Kim H, Kenney M, Park H S, Kim H D, Min B and Zhang S 2018 Adv. Opt. Mater. 6 1700507
[28] Jung H, Koo J, Heo E, Cho B, In C, Lee W, Jo H, Cho J H, Choi H, Kang M S and Lee H 2018 Adv. Mater. 30 1802760
[29] Liu P Q, Luxmoore I J, Mikhailov S A, Savostianova N A, Valmorra F, Faist J and Nash G R 2015 Nat. Commun. 6 8969
[30] Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B and Zhou L 2015 Phys. Rev. X 5 041027
[31] Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M and Zhang H W 2015 Sci. Rep. 4 7409
[32] Weis P, Garcia-Pomar J L, Hoh M, Reinhard B, Brodyanski A and Rahm M 2012 ACS Nano 6 9118
[33] Tang Y, Zhu Z, Zhang J, Guo C, Liu K, Yuan X and Qin S 2015 Chin. Phys. Lett. 32 025202
[34] Jiang R, Wu Z, Han Z and Jung H 2016 Chin. Phys. B 25 106803
[35] Du L, Li Q, Li S, Hu F, Xiong X, Li Y, Zhang W and Han J 2016 Chin. Phys. B 25 027301
[36] Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
[37] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[38] Luo Z T, Pinto N J, Davila Y and Johnson A T C 2012 Appl. Phys. Lett. 100 253108
[39] Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B and Zhang S 2017 Sci. Adv. 3 e1701377
[40] Kindness S J, Almond N W, Wei B B, Wallis R, Michailow W, Kamboj V S, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A and Degl'Innocenti R 2018 Adv. Opt. Mater. 6 1800570
[41] Kim T T, Kim H D, Zhao R, Oh S S, Ha T, Chung D S, Lee Y H, Min B and Zhang S 2018 ACS Photon. 5 1800
[42] Liu W G, Hu B, Huang Z D, Guan H Y, Li H T, Wang X K, Zhang Y, Yin H X, Xiong X L, Liu J and Wang Y T 2018 Photon. Res. 6 703
[43] Ahmadivand A, Gerislioglu B and Ramezani Z 2019 Nanoscale 11 8091
[44] Jung H, Jo H, Lee W, Kim B, Choi H, Kang M S and Lee H 2019 Adv. Opt. Mater. 7 1801205
[45] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[46] Daniels K M, Jadidi M M, Sushkov A B, Nath A, Boyd A K, Sridhara K, Drew H D, Murphy T E, Myers-Ward R L and Gaskill D K 2017 2D Mater. 4 025034
[47] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[48] Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D and Chen Y Q 2008 Appl. Phys. Lett. 93 131905
[49] Chen P Y and Alu A 2011 ACS Nano 5 5855
[50] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[51] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[52] Polat E O and Kocabas C 2013 Nano Lett. 13 5851
[53] Li Q, Cong L, Singh R, Xu N, Cao W, Zhang X, Tian Z, Du L, Han J and Zhang W 2016 Nanoscale 8 17278
[54] Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N and Zheludev N I 2007 Phys. Rev. Lett. 99 147401
[55] Liu H T, Liu Y Q and Zhu D B 2011 J. Mater. Chem. 21 3335
[56] Kakenov N, Balci O, Takan T, Ozkan V A, Akan H and Kocabas C 2016 ACS Photon. 3 1531
[57] Kakenov N, Ergoktas M S, Balci O and Kocabas C 2018 2D Mater. 5 035018
[58] Chen X, Tian Z, Lu Y, Xu Y, Zhang X, Ouyang C, Gu J, Han J and Zhang W 2019 Adv. Opt. Mater. 8 1900660
[59] Chen X, Tian Z, Wang J, Yuan Y, Zhang X, Ouyang C, Gu J, Han J and Zhang W 2019 Carbon 155 514
[60] Kim J T, Choi H, Choi Y and Cho J H 2018 ACS Appl. Mater. Interfaces 10 1836
[61] Li Q, Tian Z, Zhang X Q, Xu N N, Singh R J, Gu J Q, Lv P, Luo L B, Zhang S, Han J G and Zhang W L 2015 Carbon 90 146
[62] Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J and Zhang W 2015 Nat. Commun. 6 7082
[63] Qi J, Zhang H, Ji D, Fan X, Cheng L, Liang H, Li H, Zeng C and Zhang Z 2014 Adv. Mater. 26 3735
[64] Gorecki J, Apostolopoulos V, Ou J Y, Mailis S and Papasimakis N 2018 ACS Nano 12 5940
[65] Hwang H Y, Brandt N C, Farhat H, Hsu A L, Kong J and Nelson K A 2013 J. Phys. Chem. B 117 15819
[66] Hafez H A, Lévesque P L, Al-Naib I, Dignam M M, Chai X, Choubak S, Desjardins P, Martel R and Ozaki T 2015 Appl. Phys. Lett. 107 251903
[67] Li S, Nugraha P S, Su X, Chen X, Yang Q, Unferdorben M, Kovacs F, Kunsagi-Mate S, Liu M, Zhang X, Ouyang C, Li Y, Fulop J A, Han J and Zhang W 2019 Opt. Express 27 2317
[68] Kakenov N, Takan T, Ozkan V A, Balci O, Polat E O, Altan H and Kocabas C 2015 Opt. Lett. 40 1984
[69] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[8] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[9] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[12] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[13] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!