Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074102    DOI: 10.1088/1674-1056/ab84d3
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band

Tao Xie(谢涛)1, Meng-Ting Chen(陈梦婷)2, Jian Chen(陈健)1, Feng Lu(陆风)3, Da-Wei An(安大伟)3
1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3 National Satellite Meteorological Centre, China Meteorological Administration, Beijing 100081, China
Abstract  We used discrete dipole approximation (DDA) to examine the scattering and absorption characteristics of spherical ice crystal particles. On this basis, we studied the scattering characteristics of spherical ice crystal particles at different frequencies and non-spherical ice crystal particles with different shapes, aspect ratios, and spatial orientations. The results indicate that the DDA and Mie methods yield almost the same results for spherical ice crystal particles, illustrating the superior calculation accuracy of the DDA method. Compared with the millimeter wave band, the terahertz band particles have richer scattering characteristics and can detect ice crystal particles more easily. Different frequencies, shapes, aspect ratios, and spatial orientations have specific effects on the scattering and absorption characteristics of ice crystal particles. The results provide an important theoretical basis for the design of terahertz cloud radars and related cirrus detection methods.
Keywords:  scattering characteristics      discrete dipole approximation      terahertz      non-spherical ice crystal particles  
Received:  22 January 2020      Revised:  02 March 2020      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  92.60.Mt (Particles and aerosols)  
  92.60.Ta (Electromagnetic wave propagation)  
  92.70.Cp (Atmosphere)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61527805 and 41776181).
Corresponding Authors:  Jian Chen, Feng Lu     E-mail:  chjnjnu@163.com;lufeng@cma.gov.cn

Cite this article: 

Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟) Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band 2020 Chin. Phys. B 29 074102

[1] Wang J H, Ge J X, Wei M, Mao B T and Wang J 2013 S1 Semin. Integr. Meteorological Detect. Tech., October 22, 2013, Nanjing, China p. 715
[2] Miloshevich L M and Heymsfield A J 1997 J. Atmos. Ocean. Technol. 14 753
[3] Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F and Sun L L 2019 Chin. Phys. B 28 048703
[4] Wang J, Guo C, Guo W L, Wang L, Shi W Z and Chen X S 2019 Chin. Phys. B 28 046802
[5] Zhang M, Yang Z G, Liu J S, Wang K J, Gong J L and Wang S L 2018 Chin. Phys. B 27 060204
[6] Hu F R, Xu X, Li P, Xu X L and Wang Y E 2017 Chin. Phys. B 26 074219
[7] Liu S G and Zhong R B 2009 J. Univ. Electron. Sci. Technol. Chin. 38 481
[8] Waterman P C 1965 J. Proc. IEEE 53 805
[9] Yang P, Liou K N, Wyser K and Mitchell D 2000 Geophy. Res. 105 4699
[10] Draine B T and Flatau 1994 Opt. Soc. Am. A 11 1491
[11] Xu L S, Chen H B, Ding J L and Xia Z Y 2014 Adv. Earth Sci. 29 903
[12] Wu J X, Wei M, Huang L, Tu H Q and Liu B 2016 J. Meteorol. Sci. 36 63
[13] Ruan L M, Qi H and Wang S G 2008 J. Harbin Inst. Technol. 40 413
[14] Wang Y W, Zhang F, Dong Z W and Sun H F 2016 IEEE International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz)
[15] Gu X Y, Wang K J, Yang Z G and Liu J S 2019 Chin. Phys. B 28 098701
[16] Xu D G, Zhu X L, Wang Y Y, Li J N, He Y X, Pang Z B, Cheng H J and Yao J Q 2019 Chin. Phys. B 28 324
[17] Chen A T, Sun H Y, Han Y P, Wang J J and Cui Z W 2019 Chin. Phys. B 28 014201
[18] M Y Y, Huang H C, Hao S B, Tang W C, Zheng Z Y and Zhang Z L 2019 Chin. Phys. B 28 060702
[19] Li X Y, Yang Z L and Zhou H G 2005 J. Yunnan Univ. (Nat. Sci.) S1 150
[20] Yurkin M A and Hoekstra A G 2007 J. Quant. Spectrosc. Radiat. Transfer 106 558
[21] Draine B T 1988 Astrophys. J. 333 848
[22] Yang W H, Schatz G C and Duyne R P V 1995 J. Chem. Phys. 103 869
[23] Bai J Q 2017 Discrete Dipole Method to Study Light Scattering Characteristics of Haze Particles (MS Dissertation) (Xi'an: Xidian University) (in Chinese)
[24] Wu J X, Dou F L, An D W, Chen Q L, Huang L and Tu A Q 2016 J. Infrared Millim. Terahertz Waves 35 377
[25] Shi G Y 2007 Atmospheric Radiology (Beijing: Science Press) p. 372 (in Chinese)
[26] Wu J X, Wei M and Zhou J 2015 Plateau Meteorol. 33 252
[27] Li S L, Liu L, Gao T C, Huang W and Hu S 2016 Acta Phys. Sin. 65 100 (in Chinese)
[28] Draine B T and Flatau P J 2010 User Guide For Discrete Dipole Approximation Code DDSCAT 7.3
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[12] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!