Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074208    DOI: 10.1088/1674-1056/ab8c40
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission

Jun-Feng Hou(侯俊峰)1,4, Hai-Feng Wang(王海峰)2, Gang Wang(王刚)1,4, Yong-Quan Luo(骆永全)2, Hong-Wei Li(李宏伟)3, Zhen-Long Zhang(张振龙)3, Dong-Guang Wang(王东光)1, Yuan-Yong Deng(邓元勇)1,4
1 Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
2 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract  The Advanced Space-based Solar Observatory (ASO-S) is a mission proposed by the Chinese Solar Physics Community. As one of the three payloads of ASO-S, the Full-disc Magneto-Graph (FMG) will measure the photospheric magnetic fields of the entire solar disk with high spatial and temporal resolution, and high magnetic sensitivity, where liquid crystal variable retarder (LCVR) is the key to whether FMG can achieve its scientific goal. So far, there is no space flight experience for LCVR. Therefore, irradiation study for LCVRs becomes more important and urgent in order to make sure their safety and reliability in space application. In this paper, γ irradiation, proton irradiation, and ultra-violet (UV) irradiation are tested for LCVRs respectively. The optical and chemical properties during irradiation tests are measured and analyzed. For optical properties, there is no significant change in those parameters FMG payload concerned except the retardation. Although there is no drastic degradation in the retardation versus voltage during irradiations, the amount of retardation variation is much higher than the instrument requirements. Thus, an in-flight retardation versus voltage should be added in FMG payload, reducing or even avoiding the impact of retardation change. For chemical properties, the clearing point and birefringence of the LC materials almost have no change; the ion density dose not change below 60 krad[Si], but begin to increase dramatically above 60 krad[Si].
Keywords:  solar telescope      liquid crystal variable retarder (LCVR)      irradiation  
Received:  09 March 2020      Revised:  17 April 2020      Accepted manuscript online: 
PACS:  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  42.70.Df (Liquid crystals)  
  95.55.Ev (Solar instruments)  
  95.55.Fw (Space-based ultraviolet, optical, and infrared telescopes)  
Fund: Project supported by the Strategic Pioneer Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA15010800 and XDA15320102) and the National Natural Science Foundation of China (Grant Nos. 11427901, 11773040, 11403047, and 11427803).
Corresponding Authors:  Jun-Feng Hou     E-mail:  jfhou@bao.ac.cn

Cite this article: 

Jun-Feng Hou(侯俊峰), Hai-Feng Wang(王海峰), Gang Wang(王刚), Yong-Quan Luo(骆永全), Hong-Wei Li(李宏伟), Zhen-Long Zhang(张振龙), Dong-Guang Wang(王东光), Yuan-Yong Deng(邓元勇) Irradiation study of liquid crystal variable retarder for Full-disk Magneto-Graph payload onboard ASO-S mission 2020 Chin. Phys. B 29 074208

[1] Gan W Q, Zhu Ch, Deng Y Y, et al. 2019 RAA 19 156
[2] Deng Y Y, Zhang H Y, Yang J F, et al. 2019 RAA 19 157
[3] Li H, Chen B, Feng L, et al. 2019 RAA 19 158
[4] Chen B, Li H, Song K F, et al. 2019 RAA 19 159
[5] Zhang Z, Chen D Y, Wu J, et al. 2019 RAA 19 160
[6] Hale G E 1908 ApJ 28 315
[7] Unno W 1956 PASJ 8 108
[8] Keil S, Rimmele T, Keller C, et al. 2003 Astron. Nachr. 324 303
[9] Bettonvil F C M, Collados M, Feller A, et al. 2010 Proc. SPIE 77356, Ground based and Airborne Instrumentation for Astronomy Ⅲ, July 20, 2010, San Diego, California, USA, p. 77356I
[10] Hofmann A and Rendtel J 2003 Proc. SPIE 4843, Polarimetry in Astronomy, February 14, 2003, Waikoloa, Hawaii, USA, p. 112
[11] Yuan S 2014 Solar Polarization 7, September 9-13, 2013, Kunming, China, p. 297
[12] Liu Z H, Deng Y Y, Ji H S and Li H 2012 Sci Sin-Phys. Mech. Astron. 42 1282
[13] Goode P R, Coulter R, Gorceix N, et al. 2010 Astron. Nachr. 331 620
[14] Bueno J M and Artal P 1999 Opt. Lett. 24 64
[15] Bueno J M 2000 Vision Research 40 3791
[16] Heredero R L, Uribe-Patarroyo N, Belenguer T, Ramos G, Sánchez A, Reina M, Pillet V M and Sálvarez-Herrero A 2007 Appl. Opt. 45 689
[17] Alvarez-Herrero A, Uribe-Patarroyo N, García Parejo P, Vargas J, Heredero R L, Restrepo R, Martínez-Pillet V, del Toro Iniesta J C, López A, Fineschi S, Capobianco G, Georges M, López M, Boer G and Manolis I 2011 Proc. SPIE 8160, Polarization Science and Remote Sensing V, September 9, 2011, San Diego, California, USA, p. 81600Y
[18] Stephen A D, Kyle B M and Jay E S 2004 Proc. SPIE 5554, Photonics for Space Environments IX, October 12, 2004, Bellingham, WA, USA, p. 46
[19] Robert C W, Lewis M C, Edward W T and Roger A G 1995 Proc. SPIE 2482, Photonics for Space Environments Ⅲ, May 30, 1995, Orlando, FL, USA, p. 1
[20] Francis B, Marc C D, Krzysztof Z, Tomasz N, Hugo T and Irina P V 1996 Proc. SPIE 2811, Photonics for Space Environments IV, October 18, 1996, Denver, CO, USA, p. 1
[21] Steven A L, Jacob A B, Megan E T, Craig U, Elizabeth E G, Steven R C, Michael R B and William M 2009 Opt. Eng. 48 114002
[22] Woehrle C D, Doyle D T, Lane S A and Christodoulou C G 2016 IEEE Antennas and Wireless Propagation Letters 15 1923
[23] Oton E, Perez-Fernandez J, Lopez-Molina D, Quintana X, Oton J M and Geday M A 2015 IEEE Photon. J. 7 6900909
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[7] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[8] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[11] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[12] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[13] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[14] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!