Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057301    DOI: 10.1088/1674-1056/ab7d96
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials

Wen-Kai Yan(闫文凯)1, Ai-Bing Zhang(张爱兵)1, Li-Jun Yi(易利军)1, Bao-Lin Wang(王保林)2, Ji Wang(王骥)1
1 Piezoelectric Device Laboratory, School of Mechanical Engineering&Mechanics, Ningbo University, Ningbo 315211, China;
2 Centre for Infrastructure Engineering, School of Engineering, Western Sydney University, Penrith, NSW 2751, Australia
Abstract  A homogenization theory is developed to predict the influence of spherical inclusions on the effective thermoelectric properties of thermoelectric composite materials based on the general principles of thermodynamics and Mori-Tanaka method. The closed-form solutions of effective Seebeck coefficient, electric conductivity, heat conductivity, and figure of merit for such thermoelectric materials are obtained by solving the nonlinear coupled transport equations of electricity and heat. It is found that the effective figure of merit of thermoelectric material containing spherical inclusions can be higher than that of each constituent in the absence of size effect and interface effect. Some interesting examples of actual thermoelectric composites with spherical inclusions, such as insulated cavities, inclusions subjected to conductive electric and heat exchange and thermoelectric inclusions, are considered, and the numerical results lead to the conclusion that considerable enhancement of the effective figure of merit is achievable by introducing inclusions. In this paper, we provide a theoretical foundation for analytically and computationally treating the thermoelectric composites with more complicated inclusion structures, and thus pointing out a new route to their design and optimization.
Keywords:  thermoelectric composites      effective properties      spherical inclusions  
Received:  01 December 2019      Revised:  15 February 2020      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  46.25.Cc (Theoretical studies)  
Fund: Project supported by the Ningbo Natural Science Foundation, China (Grant Nos. 2019A610151 and 2018A610081), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY17A020001 and LY20A020002), the National Natural Science Foundation of China (Grant No. 11402063), and the K C Wong Magna Fund in Ningbo University, China.
Corresponding Authors:  Ai-Bing Zhang     E-mail:  zhangaibing@nbu.edu.cn

Cite this article: 

Wen-Kai Yan(闫文凯), Ai-Bing Zhang(张爱兵), Li-Jun Yi(易利军), Bao-Lin Wang(王保林), Ji Wang(王骥) Influence of spherical inclusions on effective thermoelectric properties of thermoelectric composite materials 2020 Chin. Phys. B 29 057301

[1] Bell L E 2008 Science 321 1457
[2] Callen H B 1960 Am. J. Phys. 28 684
[3] Harman T C and Honig J M 1967 Thermoelectric and thermomagnetic effects and applications. (New York: McGraw-Hill)
[4] Mahan G D 1997 Phys. Rev. B: Solid State Phys. 51 81
[5] Gao C Y and Chen G M 2016 Compos. Sci. Technol. 124 52
[6] Rowe D M 1999 Renew. Energ. 16 1251
[7] Duan W Y, Liu J F, Zhang C and Ma Z S 2018 Chin. Phys. B 27 097204
[8] Xu K Q, Zeng H R, Yu H Z, Zhao K Y, Li G R, Song J Q, Shi X and Chen L D 2014 Chin. Phys. Lett. 31 127201
[9] Song K, Song H P and Gao C F 2018 Chin. Phys. B 27 077304
[10] Rowe D M 2005 Thermoelectric handbook: macro to nano (BocaRaton: CRC Press)
[11] Riffat S B and Ma X 2003 Appl. Therm. Eng. 23 913
[12] Zhou B, Huang Y, En Y F, Fu Z W, Chen S and Yao R H 2018 Acta Phys. Sin. 67 028101 (in Chinese)
[13] Zhu Y Q, Zhang Z H, Song S N, Xie H Q, Song Z T, Shen L L, Li L, Wu L C and Liu B 2015 Chin. Phys. Lett. 32 77302
[14] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 048403
[15] Tritt T M, Boettner L and Chen L 2008 MRS Bull. 33 366
[16] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[17] Gooth J, Schiering G, Felser C and Nielsch K 2018 MRS Bull. 43 187
[18] Gnanaseelan M, Chen Y, Luo J J, Krause B, Pionteck J, Pötschke P and Qi H S 2018 Compos. Sci. Technol. 163 133
[19] Liu W S, Yan X, Chen G and Ren Z F 2012 Nano Energy 1 42
[20] Yuan G C, Chen X, Huang Y Y, Mao J X, Yu J Q, Lei X B and Zhang Q Y 2019 Acta Phys. Sin. 68 117201 (in Chinese)
[21] Wang T, Chen H Y, Qiu P F, Shi X and Chen L D 2019 Acta Phys. Sin. 68 090201 (in Chinese)
[22] Huang P, You L, Liang X, Zhang J Y and Luo J 2019 Acta Phys. Sin. 68 077201 (in Chinese)
[23] Tao Y, Qi N, Wang B, Chen Z Q and Tang X F 2018 Acta Phys. Sin. 67 197201 (in Chinese)
[24] Zhang F P, Zhang J W, Zhang J X, Yang X Y, Lu Q M and Zhang X 2017 Acta Phys. Sin. 66 247202 (in Chinese)
[25] Wang R F, Dai L, Yan Y C, Peng K L, Lu X, Zhou X Y and Wang G Y 2018 Chin. Phys. B 27 067201
[26] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
[27] Qin D D, Liu Y, Meng X F, Cui B, Qi Y Y, Cai W and Sui J H 2018 Chin. Phys. B 27 048402
[28] Bergman D J and Fel L G 1999 J. Appl. Phys. 85 8205
[29] Bergman D J and Levy O 1991 J. Appl. Phys. 70 6821
[30] Yang, Y, Xie S H, Ma F Y and Li J Y 2012 J. Appl. Phys. 111 013510
[31] Yang Y, Ma F Y, Liu Y Y and Li J Y 2013 Appl. Phys. Lett. 102 053905
[32] Song K, Song H P, Li M, Schiavone and Gao C F 2019 Int. J. Heat Mass Transfer. 135 1319
[33] Song K, Song H P, Schiavone and Gao C F 2019 Acta Mech. 230 3693
[34] Zhang A B, Wang B L, Wang J, Du J K, Xie C and Jin Y A 2017 Appl. Therm. Eng. 127 1442
[35] Wang P, Wang B L, Wang K F, Hirakata H and Zhang C 2019 Int. J. Eng. Sci. 142 158
[36] Liu L P 2012 Int. J. Eng. Sci. 55 35
[37] Yang Y, Lei C H, Gao C F and Li J Y 2015 J. Mech. Phys. Solids 76 98
[38] Mori T and Tanaka K 1973 ACTA Metall. 21 571
[39] Zhang A B and Wang B L 2016 Eng. Fract. Mech. 151 11
[40] Norris A N 1989 J. Appl. Mech. 56 83
[41] Tzou D Y 1991 J. Compos. Mater. 25 1064
[42] Song K, Song H P and Gao C F 2017 Chin. Phys. B 26 498
[1] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[2] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[5] Enhanced thermoelectric performance of PEDOT: PSS films via ionic liquid post-treatment
Jiaji Yang(杨家霁), Xuejing Li(李雪晶), Yanhua Jia(贾艳华), Jiang Zhang(张弜), and Qinglin Jiang(蒋庆林). Chin. Phys. B, 2022, 31(2): 027302.
[6] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[7] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[8] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[9] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[10] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[11] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[12] Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases
Feng Chi(迟锋), Zhen-Guo Fu(付振国), Liming Liu(刘黎明), Ping Zhang(张平). Chin. Phys. B, 2019, 28(10): 107305.
[13] The magneto-thermoelectric effect of graphene with intra-valley scattering
Wenye Duan(段文晔), Junfeng Liu(刘军丰), Chao Zhang(张潮), Zhongshui Ma(马中水). Chin. Phys. B, 2018, 27(9): 097204.
[14] Improving compatibility between thermoelectric components through current refraction
K Song(宋坤), H P Song(宋豪鹏), C F Gao(高存法). Chin. Phys. B, 2018, 27(7): 077304.
[15] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
No Suggested Reading articles found!