CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT |
Min-Han Mi(宓珉瀚)1, Sheng Wu(武盛)1, Ling Yang(杨凌)2, Yun-Long He(何云龙)1, Bin Hou(侯斌)1, Meng Zhang(张濛)1, Li-Xin Guo(郭立新)3, Xiao-Hua Ma(马晓华)1, Yue Hao(郝跃)1 |
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 3 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China |
|
|
Abstract The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications. The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier. F-based etching can be self-terminated after removing SiN, leaving the AlGaN barrier in the gate region. With this in-situ SiN and thin barrier etch-stop structure, the short channel effect can be suppressed, meanwhile achieving highly precisely controlled and low damage etching process. The device shows a maximum drain current of 1022 mA/mm, a peak transconductance of 459 mS/mm, and a maximum oscillation frequency (fmax) of 248 GHz.
|
Received: 04 February 2020
Revised: 14 February 2020
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2018M640957), the Fundamental Research Funds for the Central Universities, China (Grant No. 20101196761), the National Natural Science Foundation of China (Grant No. 61904135), and the National Defense Pre-Research Foundation of China (Grant No. 31513020307). |
Corresponding Authors:
Min-Han Mi
E-mail: miminhan@qq.com
|
Cite this article:
Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃) In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT 2020 Chin. Phys. B 29 047104
|
[1] |
Wu S B, Gao J F, Wang W B and Zhang J Y 2016 IEEE Trans. Electron. Dev. 63 3882
|
[2] |
Yang L, Mi M H, Hou B, Zhang H S, Zhu J J, Zhu Q, Lu Y, Zhang M, He Y L, Chen L X, Zhou X W, Lv L, Ma X H and Hao Y 2017 IEEE Electron. Dev. Lett. 38 1563
|
[3] |
Higashiwaki M, Mimura T and Matsui T 2008 Appl. Phys. Express 1 021103
|
[4] |
Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212
|
[5] |
Fu X C, Lv Y J, Zhang L J, Zhang T, Li X J, Song X B, Zhang Z R, Fang Y L and Feng Z H 2018 Electron. Lett. 54 783
|
[6] |
Yue Y Z, Hu Z Y, Guo H J, Li G W, Wang R H and Xing H L 2012 IEEE Electron. Dev. Lett. 33 988
|
[7] |
Jessen G H, Fitch R C, Jr, Gillespie J K, Via G, Crespo A, Langley D, Denninghiff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron. Dev. 54 2589
|
[8] |
Lin Y K, Noda S, Huang C C, Lo H C, Wu C H, Luc Q H, Chang P C, Hsu H T, Samukawa S and Chang E Y 2017 IEEE Trans. Electron. Dev.. 38 771
|
[9] |
Medjdoub F, Zegaoui M, Ducatteau D, Rolland N and Rolland P A 2011 IEEE Electron. Dev. Lett. 32 874
|
[10] |
Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J and Shen B 2013 IEEE Electron. Dev. Lett. 34 1370
|
[11] |
Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Bao Q L, Wei K, Zheng Y K, Zhao C, Gao H W, Sun Q, Zhang Z F and Chen K J 2016 IEEE Electron. Dev. Lett. 37 1617
|
[12] |
Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Fan J, Shi J Y, Wei K, Zheng Y K, Gao H W, Sun Q, Wang M J, Shen B and Chen K J 2018 IEEE Trans. Electron. Dev. 65 207
|
[13] |
Lin S X, Wang M J, Sang F, Tao M, Wen C P, Xie B, Yu M, Wang J Y, Hao Y L, Wu W G, Xu J, Cheng K and Shen B 2016 IEEE Electron. Dev. Lett. 37 377
|
[14] |
Lu B, Sun M and Palacios T 2013 IEEE Electron. Dev. Lett. 34 369
|
[15] |
Derluyn J, Hove M V, Visalli D, Lorenz A, Marcon D, Srivastava P, Geens K, Sijmus B, Viaene J, Kang X, Das J, Medjdoub F, Cheng K, Degroote S, Leys M, Borghs G and Germain M 2009 IEDM Tech. Dig. p. 157
|
[16] |
Mi M H, Ma X H, Yang L, Hou B, Zhu J J, He Y L, Zhang M, Wu S and Hao Y 2017 Appl. Phys. Lett. 111 173502
|
[17] |
Zhang Y C, Wei K, Huang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K and Liu X Y 2018 IEEE Electron. Dev. Lett. 39 727
|
[18] |
Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron. Dev. Lett. 32 626
|
[19] |
Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhou X W and Hao Y 2017 Appl. Phys. Express 10 076501
|
[20] |
Pecheux R, Kabouche R, Okada E, Zegaoui M and Medjdoub F 2018 IEEE Conference (INMMIC) p. 1
|
[21] |
Godejohann B J, Ture E, Muller S, Prescher M, Kirste L, Aidam R, Polyakov V, Bruckner P, Breuer S, Kohler K, Quay R and Ambacher O 2017 Phys. Status Solidi B 254 1600715
|
[22] |
Higashiwaki M, Mimura T and Matsui T 2007 IEEE Trans. Electron. Dev. 54 1566
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|