|
|
Influence of driving ways on measurement of relative phase in a two-atoms cavity system |
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平) |
Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract We study the influence of driving ways on the interaction in a two-atoms cavity quantum electrodynamics system. The results show that driving ways can induce different excitation pathways. We show two kinds of significantly different excitation spectrums under two ways: driving cavity and driving atoms. We demonstrate that driving atoms can be considered as a method to obtain the position information of atoms. This research has very practical application values on obtaining the position information of atoms in a cavity.
|
Received: 29 November 2019
Revised: 20 January 2020
Accepted manuscript online:
|
PACS:
|
37.30.+i
|
(Atoms, molecules, andions incavities)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874287 and 11574229), the National Basic Research Program of China (Grant No. 2016YFA0302800), and the Fund from Shanghai Science and Technology Committee, China (Grant No. 18JC1410900). |
Corresponding Authors:
Jingping Xu
E-mail: xx_jj_pp@hotmail.com
|
Cite this article:
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平) Influence of driving ways on measurement of relative phase in a two-atoms cavity system 2020 Chin. Phys. B 29 043702
|
[1] |
Haroche S and Raimond J M 2006 Exploring the quantum: atoms, cavities, and photons (Oxford: Oxford University Press)
|
[2] |
Mabuchi H and A C Doherty 2002 Science 298 1372
|
[3] |
Vahala K J 2003 Nature 424 839
|
[4] |
Kaluzny Y, Goy P, Gross M, Raimond J and Haroche S 1983 Phys. Rev. Lett. 51 1175
|
[5] |
Brune M, Schmidt K F, Maali A, Dreyer J, Hagley E, Raimond J and Haroche S 1996 Phys. Rev. Lett. 76 1800
|
[6] |
Brecha R, Orozco L, Raizen M, Xiao M and Kimble H J 1995 J. Opt. Soc. Am. B 12 2329
|
[7] |
Yang P F, He H, Wang Z H, Han X, Li G, Zhang P F and Zhang T C 2019 Chin. Phys. B 28 043701
|
[8] |
Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J and Haroche S 1996 Phys. Rev. Lett. 77 4887
|
[9] |
Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J and Haroche S 1999 Nature 400 239
|
[10] |
Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deleglise S, Hoff U B, Brune M, Raimond J M and Haroche S 2007 Nature 446 297
|
[11] |
Guerlin C, Bernu J, Deleglise S, Sayrin C, Gleyzes S, Kuhr S, Brune M, Raimond J M and Haroche S 2007 Nature 448 889
|
[12] |
Reiserer A, Ritter S and Rempe G 2013 Science 342 1349
|
[13] |
Xia K, Johnsson M, Knight P L and Twamley J 2016 Phys. Rev. Lett. 116 023601
|
[14] |
Besse J C, Gasparinetti S, Collodo M C, Walter T, Kurpiers P, Pechal M, Eichler C and Wallraff A 2018 Phys. Rev. X 8 021003
|
[15] |
Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, M Brune, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
|
[16] |
Tiecke T, Thompson J D, De L N P, Liu L, Vuletic V and Lukin M D 2014 Nature 508 241
|
[17] |
Reiserer A, Kalb N, Rempe G and Ritter S 2014 Nature 508 237
|
[18] |
Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2018 Phys. Rev. X 8 011018
|
[19] |
Tian Y L, Wang Z H, Yang P F, Zhang P F, Li G and Zhang T C 2019 Chin. Phys. B 28 023701
|
[20] |
Rauschenbeutel A, Bertet P, Osnaghi S, Nogues G, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. A 64 050301
|
[21] |
Kimble H J 2008 Nature 453 1023
|
[22] |
Weber B, Specht H P, Muller T, Bochmann J, Mucke M, Moehring D L and Rempe G 2009 Phys. Rev. Lett. 102 030501
|
[23] |
Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2017 Phys. Rev. Lett. 118 210503
|
[24] |
Li W F, Du J J, Wen R J, Li G and Zhang T C 2015 Chin. Phys. Lett. 32 104210
|
[25] |
Zhang P F, Zhang Y C, Li G and Zhang T C 2011 Chin. Phys. Lett. 28 044203
|
[26] |
Li W F, Du J J, Wen R J, Yang P F, Li G and Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese)
|
[27] |
Wang Z H, Tian Y L, Li G and Zhang T C 2015 Acta Phys. Sin. 64 184209 (in Chinese)
|
[28] |
Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
|
[29] |
Hennrich M, Kuhn A and Rempe G 2005 Phys. Rev. Lett. 94 053604
|
[30] |
Choi W, Lee J H, An K, Yen C F, Dasari R and Feld M 2006 Phys. Rev. Lett. 96 093603
|
[31] |
Kubanek A, Ourjoumtsev A, Schuster I, Koch M, W Pinkse P, Murr K and Rempe G 2008 Phys. Rev. Lett. 101 203602
|
[32] |
Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F and Zhang T C 2017 Chin. Phys. B 26 12406
|
[33] |
Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604
|
[34] |
Daiss S, Welte S, Hacker B, Li L and G Rempe 2019 Phys. Rev. Lett. 122 133603
|
[35] |
Zheng Y M, Hu C S, Yang Z B and Wu H Z 2016 Chin. Phys. B 25 104202
|
[36] |
Verma J K, Singh H and Pathak P K 2018 Phys. Rev. B 98 125305
|
[37] |
Pleinert M O, Zanthier J V and Agarwal G S 2018 Phys. Rev. A 97 023831
|
[38] |
Reimann R, Alt W, Kampschulte T, Macha T, Ratschbacher L, Thau N, Yoon S and Meschede D 2015 Phys. Rev. Lett. 114 023601
|
[39] |
Pleinert M O, Zanthier J V and Agarwal G S 2017 Optica 4 779
|
[40] |
Xu J P, Chang S, Yang Y P, Zhu S Y and Agarwal G S 2017 Phys. Rev. A 96 013839
|
[41] |
Bin Q, Lu X Y, Yin T S, Li Y and Wu Y 2019 Phys. Rev. A 99 033809
|
[42] |
Radulaski M, Fischer K A, Lagoudakis K G, Zhang J L and Vuckovic J 2017 Phys. Rev. A 96 011801
|
[43] |
Zhu C J, Yang Y P and Agarwal G S 2017 Phys. Rev. A 95 063828
|
[44] |
Han Y F, Zhu C J, Huang X S and Yang Y P 2018 Phys. Rev. A 98 033828
|
[45] |
Lin J Z, Hou K, Zhu C J and Yang Y P 2019 Phys. Rev. A 99 053850
|
[46] |
Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
|
[47] |
Johansson J R, Nation P D and Nori F 2013 Comput. Phys. Commun. 184 1234
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|