Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043702    DOI: 10.1088/1674-1056/ab7904
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Influence of driving ways on measurement of relative phase in a two-atoms cavity system

Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平)
Key Laboratory of Advanced Micro-Structured Materials of Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  We study the influence of driving ways on the interaction in a two-atoms cavity quantum electrodynamics system. The results show that driving ways can induce different excitation pathways. We show two kinds of significantly different excitation spectrums under two ways: driving cavity and driving atoms. We demonstrate that driving atoms can be considered as a method to obtain the position information of atoms. This research has very practical application values on obtaining the position information of atoms in a cavity.
Keywords:  cavity quantum electrodynamics system      photon  
Received:  29 November 2019      Revised:  20 January 2020      Accepted manuscript online: 
PACS:  37.30.+i (Atoms, molecules, andions incavities)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874287 and 11574229), the National Basic Research Program of China (Grant No. 2016YFA0302800), and the Fund from Shanghai Science and Technology Committee, China (Grant No. 18JC1410900).
Corresponding Authors:  Jingping Xu     E-mail:  xx_jj_pp@hotmail.com

Cite this article: 

Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平) Influence of driving ways on measurement of relative phase in a two-atoms cavity system 2020 Chin. Phys. B 29 043702

[1] Haroche S and Raimond J M 2006 Exploring the quantum: atoms, cavities, and photons (Oxford: Oxford University Press)
[2] Mabuchi H and A C Doherty 2002 Science 298 1372
[3] Vahala K J 2003 Nature 424 839
[4] Kaluzny Y, Goy P, Gross M, Raimond J and Haroche S 1983 Phys. Rev. Lett. 51 1175
[5] Brune M, Schmidt K F, Maali A, Dreyer J, Hagley E, Raimond J and Haroche S 1996 Phys. Rev. Lett. 76 1800
[6] Brecha R, Orozco L, Raizen M, Xiao M and Kimble H J 1995 J. Opt. Soc. Am. B 12 2329
[7] Yang P F, He H, Wang Z H, Han X, Li G, Zhang P F and Zhang T C 2019 Chin. Phys. B 28 043701
[8] Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J and Haroche S 1996 Phys. Rev. Lett. 77 4887
[9] Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J and Haroche S 1999 Nature 400 239
[10] Gleyzes S, Kuhr S, Guerlin C, Bernu J, Deleglise S, Hoff U B, Brune M, Raimond J M and Haroche S 2007 Nature 446 297
[11] Guerlin C, Bernu J, Deleglise S, Sayrin C, Gleyzes S, Kuhr S, Brune M, Raimond J M and Haroche S 2007 Nature 448 889
[12] Reiserer A, Ritter S and Rempe G 2013 Science 342 1349
[13] Xia K, Johnsson M, Knight P L and Twamley J 2016 Phys. Rev. Lett. 116 023601
[14] Besse J C, Gasparinetti S, Collodo M C, Walter T, Kurpiers P, Pechal M, Eichler C and Wallraff A 2018 Phys. Rev. X 8 021003
[15] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, M Brune, Raimond J M and Haroche S 1999 Phys. Rev. Lett. 83 5166
[16] Tiecke T, Thompson J D, De L N P, Liu L, Vuletic V and Lukin M D 2014 Nature 508 241
[17] Reiserer A, Kalb N, Rempe G and Ritter S 2014 Nature 508 237
[18] Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2018 Phys. Rev. X 8 011018
[19] Tian Y L, Wang Z H, Yang P F, Zhang P F, Li G and Zhang T C 2019 Chin. Phys. B 28 023701
[20] Rauschenbeutel A, Bertet P, Osnaghi S, Nogues G, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. A 64 050301
[21] Kimble H J 2008 Nature 453 1023
[22] Weber B, Specht H P, Muller T, Bochmann J, Mucke M, Moehring D L and Rempe G 2009 Phys. Rev. Lett. 102 030501
[23] Welte S, Hacker B, Daiss S, Ritter S and Rempe G 2017 Phys. Rev. Lett. 118 210503
[24] Li W F, Du J J, Wen R J, Li G and Zhang T C 2015 Chin. Phys. Lett. 32 104210
[25] Zhang P F, Zhang Y C, Li G and Zhang T C 2011 Chin. Phys. Lett. 28 044203
[26] Li W F, Du J J, Wen R J, Yang P F, Li G and Zhang T C 2014 Acta Phys. Sin. 63 244205 (in Chinese)
[27] Wang Z H, Tian Y L, Li G and Zhang T C 2015 Acta Phys. Sin. 64 184209 (in Chinese)
[28] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[29] Hennrich M, Kuhn A and Rempe G 2005 Phys. Rev. Lett. 94 053604
[30] Choi W, Lee J H, An K, Yen C F, Dasari R and Feld M 2006 Phys. Rev. Lett. 96 093603
[31] Kubanek A, Ourjoumtsev A, Schuster I, Koch M, W Pinkse P, Murr K and Rempe G 2008 Phys. Rev. Lett. 101 203602
[32] Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F and Zhang T C 2017 Chin. Phys. B 26 12406
[33] Hamsen C, Tolazzi K N, Wilk T and Rempe G 2017 Phys. Rev. Lett. 118 133604
[34] Daiss S, Welte S, Hacker B, Li L and G Rempe 2019 Phys. Rev. Lett. 122 133603
[35] Zheng Y M, Hu C S, Yang Z B and Wu H Z 2016 Chin. Phys. B 25 104202
[36] Verma J K, Singh H and Pathak P K 2018 Phys. Rev. B 98 125305
[37] Pleinert M O, Zanthier J V and Agarwal G S 2018 Phys. Rev. A 97 023831
[38] Reimann R, Alt W, Kampschulte T, Macha T, Ratschbacher L, Thau N, Yoon S and Meschede D 2015 Phys. Rev. Lett. 114 023601
[39] Pleinert M O, Zanthier J V and Agarwal G S 2017 Optica 4 779
[40] Xu J P, Chang S, Yang Y P, Zhu S Y and Agarwal G S 2017 Phys. Rev. A 96 013839
[41] Bin Q, Lu X Y, Yin T S, Li Y and Wu Y 2019 Phys. Rev. A 99 033809
[42] Radulaski M, Fischer K A, Lagoudakis K G, Zhang J L and Vuckovic J 2017 Phys. Rev. A 96 011801
[43] Zhu C J, Yang Y P and Agarwal G S 2017 Phys. Rev. A 95 063828
[44] Han Y F, Zhu C J, Huang X S and Yang Y P 2018 Phys. Rev. A 98 033828
[45] Lin J Z, Hou K, Zhu C J and Yang Y P 2019 Phys. Rev. A 99 053850
[46] Johansson J R, Nation P D and Nori F 2012 Comput. Phys. Commun. 183 1760
[47] Johansson J R, Nation P D and Nori F 2013 Comput. Phys. Commun. 184 1234
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[7] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[12] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[13] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[14] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[15] Polarization-dependent ultrafast carrier dynamics in GaAs with anisotropic response
Ya-Chao Li(李亚超), Chao Ge(葛超), Peng Wang(汪鹏), Shuang Liu(刘爽), Xiao-Ran Ma(麻晓冉), Bing Wang(王冰), Hai-Ying Song(宋海英), and Shi-Bing Liu(刘世炳). Chin. Phys. B, 2022, 31(6): 067102.
No Suggested Reading articles found!